A day full of math games & activities. Find one near you.
A day full of math games & activities. Find one near you.

Trigonometric Ratios in Radians

Trigonometric Ratios in Radians

Introduction:

When you delve deeper into your study of trigonometry, you will find that when talking about angle measures, the radian scale is much more widespread than the degree scale. Given this, it is imperative to know the important T-ratio values in the radian scale. These are summarized below (both degree and radian scales are used; when the angle value has no unit specified, it is assumed to be in radians; N.D. means not-defined).
Make sure you read and commit to memory each of these values of trigonometric ratios.


Specific Degree measure in Radians:

1. \(\begin{align}\theta  = {0^0}\,\,\,{\rm{or}}\,\,\,\theta  = 0\end{align}\)

  • \(\begin{align}\sin {0^0} = 0\,\,\,{\rm{or}}\,\,\,\sin 0 = 0\end{align}\)

  • \(\begin{align}\cos {0^0} = 1\,\,\,{\rm{or}}\,\,\,\cos 0 = 1\end{align}\)

  • \(\begin{align}\tan {0^0} = 0\,\,\,{\rm{or}}\,\,\,\tan 0 = 0\end{align}\)

  • \(\begin{align}{\rm{cosec}}\,{0^0}:{\rm{N.D.}}\,\,\,{\rm{or}}\,\,\,{\rm{cosec}}\,0:{\rm{N.D.}}\end{align}\)

  • \(\begin{align}\sec {0^0} = 1\,\,\,{\rm{or}}\,\,\,\sec 0 = 1\end{align}\)

  • \(\begin{align}\cot {0^0}:{\rm{N.D.}}\,\,\,{\rm{or}}\,\,\,\cot 0:{\rm{N.D.}}\end{align}\)

 2. \(\begin{align}\theta  = {30^0}\,\,\,{\rm{or}}\,\,\,\theta  = \frac{\pi }{6}\end{align}\)

  • \(\begin{align}\sin {30^0} = \frac{1}{2}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{6} = \frac{1}{2}\end{align}\)

  • \(\begin{align}\cos {30^0} = \frac{{\sqrt 3 }}{2}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\end{align}\)

  • \(\begin{align}\tan {30^0} = \frac{1}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\end{align}\)

  • \(\begin{align} {\rm{cosec}}\,{30^0}{\rm{ = 2}}\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{6} = 2\end{align}\)

  • \(\begin{align}\sec {30^0} = \frac{2}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{6} = \frac{2}{{\sqrt 3 }}\end{align}\)

  • \(\begin{align}\cot {30^0} = \sqrt 3 \,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{6} = \sqrt 3 \end{align}\)

3. \(\begin{align}\theta  = {45^0}\,\,\,{\rm{or}}\,\,\,\theta  = \frac{\pi }{4}\end{align}\)

  • \(\begin{align}\sin {45^0} = \frac{1}{{\sqrt 2 }}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\end{align}\)

  • \(\begin{align}\cos {45^0} = \frac{1}{{\sqrt 2 }}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\end{align}\)

  • \(\begin{align}\tan {45^0} = 1\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{4} = 1\end{align}\)

  • \(\begin{align} {\rm{cosec}}\,{45^0}{\rm{ = }}\sqrt {\rm{2}} \,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{4} = \sqrt {\rm{2}} \end{align}\)

  • \(\begin{align}\sec {45^0} = \sqrt {\rm{2}} \,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{4} = \sqrt {\rm{2}} \end{align}\)

  • \(\begin{align}\cot {45^0} = 1\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{4} = 1\end{align}\)

4.  \(\begin{align}\theta  = {60^0}\,\,\,{\rm{or}}\,\,\,\theta  = \frac{\pi }{3}\end{align}\)

  • \(\begin{align}\sin {60^0} = \frac{{\sqrt 3 }}{2}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\end{align}\)

  • \(\begin{align}\cos {60^0} = \frac{1}{2}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{3} = \frac{1}{2}\end{align}\)

  • \(\begin{align}\tan {60^0} = \sqrt 3 \,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{3} = \sqrt 3 \end{align}\)

  • \(\begin{align} {\rm{cosec}}\,{60^0}{\rm{ = }}\frac{2}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{3} = \frac{2}{{\sqrt 3 }}\end{align}\)

  • \(\begin{align}\sec {60^0} = {\rm{2}}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{3} = {\rm{2}}\end{align}\)

  • \(\begin{align}\cot {60^0} = \frac{1}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{3} = \frac{1}{{\sqrt 3 }}\end{align}\)

5.  \(\begin{align}\theta  = {90^0}\,\,\,{\rm{or}}\,\,\,\theta  = \frac{\pi }{2}\end{align}\)

  • \(\begin{align}\sin {90^0} = 1\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{2} = 1\end{align}\)

  • \(\begin{align}\cos {90^0} = 0\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{2} = 0\end{align}\)

  • \(\begin{align}\tan {90^0}:{\rm{nd}}\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{2}:{\rm{nd}}\end{align}\)

  • \(\begin{align}{\rm{cosec}}\,{90^0}{\rm{ = }}1\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{2} = 1\end{align}\)

  • \(\begin{align}\sec {90^0}:{\rm{nd}}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{2}:{\rm{nd}}\end{align}\)

  • \(\begin{align}\cot {90^0} = 0\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{2} = 0\end{align}\)


Solved Example:

Example 1: Write the values of: 

(a) \(\begin{align}\sin \frac{\pi }{6}\end{align}\)

(b) \(\begin{align}\sec \frac{\pi }{3}\end{align}\)

(c) \(\begin{align}\cot \frac{\pi }{2}\end{align}\)

Solution: We have:

(a) \(\begin{align}\sin \frac{\pi }{6} = \sin {30^0} = \frac{1}{2}\end{align}\)

(b) \(\begin{align}\sec \frac{\pi }{3} = \sec {60^0} = 2\end{align}\)

(c) \(\begin{align}\cot \frac{\pi }{2} = \cot {90^0} = 0\end{align}\)

Challenge: Write the values of:

(1) \(\begin{align} {\rm{cosec}}\frac{\pi }{4}\end{align}\)

(2) \(\begin{align}\cos \frac{\pi }{2}\end{align}\)

(3) \(\begin{align}\tan \frac{\pi }{3}\end{align}\)

Tip: Use a similar approach as in above example and also please go through trigonometric ratios of Specific Angles.


Download SOLVED Practice Questions of Trigonometric Ratios in Radians for FREE
Trigonometry
Grade 10 | Answers Set 1
Trigonometry
Grade 9 | Questions Set 1
Trigonometry
Grade 9 | Answers Set 1
Trigonometry
Grade 10 | Questions Set 1
Learn from the best math teachers and top your exams

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school