Trigonometric Ratios in Radians
Introduction:
When you delve deeper into your study of trigonometry, you will find that when talking about angle measures, the radian scale is much more widespread than the degree scale. Given this, it is imperative to know the important T-ratio values in the radian scale. These are summarized below (both degree and radian scales are used; when the angle value has no unit specified, it is assumed to be in radians; N.D. means not-defined).
Make sure you read and commit to memory each of these values of trigonometric ratios.
Specific Degree measure in Radians:
1. \(\begin{align}\theta = {0^0}\,\,\,{\rm{or}}\,\,\,\theta = 0\end{align}\)
-
\(\begin{align}\sin {0^0} = 0\,\,\,{\rm{or}}\,\,\,\sin 0 = 0\end{align}\)
-
\(\begin{align}\cos {0^0} = 1\,\,\,{\rm{or}}\,\,\,\cos 0 = 1\end{align}\)
-
\(\begin{align}\tan {0^0} = 0\,\,\,{\rm{or}}\,\,\,\tan 0 = 0\end{align}\)
-
\(\begin{align}{\rm{cosec}}\,{0^0}:{\rm{N.D.}}\,\,\,{\rm{or}}\,\,\,{\rm{cosec}}\,0:{\rm{N.D.}}\end{align}\)
-
\(\begin{align}\sec {0^0} = 1\,\,\,{\rm{or}}\,\,\,\sec 0 = 1\end{align}\)
-
\(\begin{align}\cot {0^0}:{\rm{N.D.}}\,\,\,{\rm{or}}\,\,\,\cot 0:{\rm{N.D.}}\end{align}\)
2. \(\begin{align}\theta = {30^0}\,\,\,{\rm{or}}\,\,\,\theta = \frac{\pi }{6}\end{align}\)
-
\(\begin{align}\sin {30^0} = \frac{1}{2}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{6} = \frac{1}{2}\end{align}\)
-
\(\begin{align}\cos {30^0} = \frac{{\sqrt 3 }}{2}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\end{align}\)
-
\(\begin{align}\tan {30^0} = \frac{1}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{6} = \frac{1}{{\sqrt 3 }}\end{align}\)
-
\(\begin{align} {\rm{cosec}}\,{30^0}{\rm{ = 2}}\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{6} = 2\end{align}\)
-
\(\begin{align}\sec {30^0} = \frac{2}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{6} = \frac{2}{{\sqrt 3 }}\end{align}\)
-
\(\begin{align}\cot {30^0} = \sqrt 3 \,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{6} = \sqrt 3 \end{align}\)
3. \(\begin{align}\theta = {45^0}\,\,\,{\rm{or}}\,\,\,\theta = \frac{\pi }{4}\end{align}\)
-
\(\begin{align}\sin {45^0} = \frac{1}{{\sqrt 2 }}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\end{align}\)
-
\(\begin{align}\cos {45^0} = \frac{1}{{\sqrt 2 }}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{4} = \frac{1}{{\sqrt 2 }}\end{align}\)
-
\(\begin{align}\tan {45^0} = 1\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{4} = 1\end{align}\)
-
\(\begin{align} {\rm{cosec}}\,{45^0}{\rm{ = }}\sqrt {\rm{2}} \,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{4} = \sqrt {\rm{2}} \end{align}\)
-
\(\begin{align}\sec {45^0} = \sqrt {\rm{2}} \,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{4} = \sqrt {\rm{2}} \end{align}\)
-
\(\begin{align}\cot {45^0} = 1\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{4} = 1\end{align}\)
4. \(\begin{align}\theta = {60^0}\,\,\,{\rm{or}}\,\,\,\theta = \frac{\pi }{3}\end{align}\)
-
\(\begin{align}\sin {60^0} = \frac{{\sqrt 3 }}{2}\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\end{align}\)
-
\(\begin{align}\cos {60^0} = \frac{1}{2}\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{3} = \frac{1}{2}\end{align}\)
-
\(\begin{align}\tan {60^0} = \sqrt 3 \,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{3} = \sqrt 3 \end{align}\)
-
\(\begin{align} {\rm{cosec}}\,{60^0}{\rm{ = }}\frac{2}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{3} = \frac{2}{{\sqrt 3 }}\end{align}\)
-
\(\begin{align}\sec {60^0} = {\rm{2}}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{3} = {\rm{2}}\end{align}\)
-
\(\begin{align}\cot {60^0} = \frac{1}{{\sqrt 3 }}\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{3} = \frac{1}{{\sqrt 3 }}\end{align}\)
5. \(\begin{align}\theta = {90^0}\,\,\,{\rm{or}}\,\,\,\theta = \frac{\pi }{2}\end{align}\)
-
\(\begin{align}\sin {90^0} = 1\,\,\,{\rm{or}}\,\,\,\sin \frac{\pi }{2} = 1\end{align}\)
-
\(\begin{align}\cos {90^0} = 0\,\,\,{\rm{or}}\,\,\,\cos \frac{\pi }{2} = 0\end{align}\)
-
\(\begin{align}\tan {90^0}:{\rm{nd}}\,\,\,{\rm{or}}\,\,\,\tan \frac{\pi }{2}:{\rm{nd}}\end{align}\)
-
\(\begin{align}{\rm{cosec}}\,{90^0}{\rm{ = }}1\,\,\,{\rm{or}}\,\,\, {\rm{cosec}}\frac{\pi }{2} = 1\end{align}\)
-
\(\begin{align}\sec {90^0}:{\rm{nd}}\,\,\,{\rm{or}}\,\,\,\sec \frac{\pi }{2}:{\rm{nd}}\end{align}\)
-
\(\begin{align}\cot {90^0} = 0\,\,\,{\rm{or}}\,\,\,\cot \frac{\pi }{2} = 0\end{align}\)
Solved Example:
Example 1: Write the values of:
(a) \(\begin{align}\sin \frac{\pi }{6}\end{align}\)
(b) \(\begin{align}\sec \frac{\pi }{3}\end{align}\)
(c) \(\begin{align}\cot \frac{\pi }{2}\end{align}\)
Solution: We have:
(a) \(\begin{align}\sin \frac{\pi }{6} = \sin {30^0} = \frac{1}{2}\end{align}\)
(b) \(\begin{align}\sec \frac{\pi }{3} = \sec {60^0} = 2\end{align}\)
(c) \(\begin{align}\cot \frac{\pi }{2} = \cot {90^0} = 0\end{align}\)
Challenge: Write the values of:
(1) \(\begin{align} {\rm{cosec}}\frac{\pi }{4}\end{align}\)
(2) \(\begin{align}\cos \frac{\pi }{2}\end{align}\)
(3) \(\begin{align}\tan \frac{\pi }{3}\end{align}\)
⚡Tip: Use a similar approach as in above example and also please go through trigonometric ratios of Specific Angles.
- Live one on one classroom and doubt clearing
- Practice worksheets in and after class for conceptual clarity
- Personalized curriculum to keep up with school