Tan 9 Degrees
The value of tan 9 degrees is 0.1583844. . .. Tan 9 degrees in radians is written as tan (9° × π/180°), i.e., tan (π/20) or tan (0.157079. . .). In this article, we will discuss the methods to find the value of tan 9 degrees with examples.
- Tan 9° in decimal: 0.1583844. . .
- Tan (-9 degrees): -0.1583844. . .
- Tan 9° in radians: tan (π/20) or tan (0.1570796 . . .)
What is the Value of Tan 9 Degrees?
The value of tan 9 degrees in decimal is 0.158384440. . .. Tan 9 degrees can also be expressed using the equivalent of the given angle (9 degrees) in radians (0.15707 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 9 degrees = 9° × (π/180°) rad = π/20 or 0.1570 . . .
∴ tan 9° = tan(0.1570) = 0.1583844. . .
Explanation:
For tan 9 degrees, the angle 9° lies between 0° and 90° (First Quadrant). Since tangent function is positive in the first quadrant, thus tan 9° value = 0.1583844. . .
Since the tangent function is a periodic function, we can represent tan 9° as, tan 9 degrees = tan(9° + n × 180°), n ∈ Z.
⇒ tan 9° = tan 189° = tan 369°, and so on.
Note: Since, tangent is an odd function, the value of tan(-9°) = -tan(9°).
Methods to Find Value of Tan 9 Degrees
The tangent function is positive in the 1st quadrant. The value of tan 9° is given as 0.15838. . .. We can find the value of tan 9 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Tan 9° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the tan 9 degrees as:
- sin(9°)/cos(9°)
- ± sin 9°/√(1 - sin²(9°))
- ± √(1 - cos²(9°))/cos 9°
- ± 1/√(cosec²(9°) - 1)
- ± √(sec²(9°) - 1)
- 1/cot 9°
Note: Since 9° lies in the 1st Quadrant, the final value of tan 9° will be positive.
We can use trigonometric identities to represent tan 9° as,
- cot(90° - 9°) = cot 81°
- -cot(90° + 9°) = -cot 99°
- -tan (180° - 9°) = -tan 171°
Tan 9 Degrees Using Unit Circle
To find the value of tan 9 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 9° angle with the positive x-axis.
- The tan of 9 degrees equals the y-coordinate(0.1564) divided by x-coordinate(0.9877) of the point of intersection (0.9877, 0.1564) of unit circle and r.
Hence the value of tan 9° = y/x = 0.1584 (approx).
☛ Also Check:
Examples Using Tan 9 Degrees
-
Example 1: Find the value of tan 9° if cot 9° is 6.3137.
Solution:
Since, tan 9° = 1/cot 9°
⇒ tan 9° = 1/6.3137 = 0.1584 -
Example 2: Find the value of (2 sin (4.5°) cos (4.5°) sec (9°)). [Hint: Use tan 9° = 0.1584]
Solution:
Using sin 2a formula,
2 sin (4.5°) cos (4.5°) = sin (2 × 4.5°) = sin 9°
⇒ 2 sin (4.5°) cos (4.5°) sec(9°) = sin 9° sec 9°
= sin 9°/cos 9° = tan 9°
⇒ (2 sin (4.5°) cos (4.5°) sec(9°)) = 0.1584 -
Example 3: Find the value of 2 tan(9°)/5 tan(171°).
Solution:
Using trigonometric identities, we know, tan(9°) = -tan(180° - 9°) = -tan 171°.
⇒ tan(9°) = -tan(171°)
⇒ Value of 2 tan(9°)/5 tan(171°) = -2/5
FAQs on Tan 9 Degrees
What is Tan 9 Degrees?
Tan 9 degrees is the value of tangent trigonometric function for an angle equal to 9 degrees. The value of tan 9° is 0.1584 (approx).
What is the Value of Tan 9° in Terms of Cosec 9°?
Since the tangent function can be represented using the cosecant function, we can write tan 9° as 1/√(cosec²(9°) - 1). The value of cosec 9° is equal to 6.39245.
What is the Value of Tan 9 Degrees in Terms of Cot 9°?
Since the tangent function is the reciprocal of the cotangent function, we can write tan 9° as 1/cot(9°). The value of cot 9° is equal to 6.31375.
How to Find Tan 9° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of tan 9° can be given in terms of other trigonometric functions as:
- sin(9°)/cos(9°)
- ± sin 9°/√(1 - sin²(9°))
- ± √(1 - cos²(9°))/cos 9°
- ± 1/√(cosec²(9°) - 1)
- ± √(sec²(9°) - 1)
- 1/cot 9°
☛ Also check: trigonometry table
How to Find the Value of Tan 9 Degrees?
The value of tan 9 degrees can be calculated by constructing an angle of 9° with the x-axis, and then finding the coordinates of the corresponding point (0.9877, 0.1564) on the unit circle. The value of tan 9° is equal to the y-coordinate(0.1564) divided by the x-coordinate (0.9877). ∴ tan 9° = 0.1584
visual curriculum