Tan 6 Degrees
The value of tan 6 degrees is 0.1051042. . .. Tan 6 degrees in radians is written as tan (6° × π/180°), i.e., tan (π/30) or tan (0.104719. . .). In this article, we will discuss the methods to find the value of tan 6 degrees with examples.
- Tan 6° in decimal: 0.1051042. . .
- Tan (-6 degrees): -0.1051042. . .
- Tan 6° in radians: tan (π/30) or tan (0.1047197 . . .)
What is the Value of Tan 6 Degrees?
The value of tan 6 degrees in decimal is 0.105104235. . .. Tan 6 degrees can also be expressed using the equivalent of the given angle (6 degrees) in radians (0.10471 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 6 degrees = 6° × (π/180°) rad = π/30 or 0.1047 . . .
∴ tan 6° = tan(0.1047) = 0.1051042. . .
Explanation:
For tan 6 degrees, the angle 6° lies between 0° and 90° (First Quadrant). Since tangent function is positive in the first quadrant, thus tan 6° value = 0.1051042. . .
Since the tangent function is a periodic function, we can represent tan 6° as, tan 6 degrees = tan(6° + n × 180°), n ∈ Z.
⇒ tan 6° = tan 186° = tan 366°, and so on.
Note: Since, tangent is an odd function, the value of tan(-6°) = -tan(6°).
Methods to Find Value of Tan 6 Degrees
The tangent function is positive in the 1st quadrant. The value of tan 6° is given as 0.10510. . .. We can find the value of tan 6 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Tan 6 Degrees Using Unit Circle
To find the value of tan 6 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 6° angle with the positive x-axis.
- The tan of 6 degrees equals the y-coordinate(0.1045) divided by x-coordinate(0.9945) of the point of intersection (0.9945, 0.1045) of unit circle and r.
Hence the value of tan 6° = y/x = 0.1051 (approx).
Tan 6° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the tan 6 degrees as:
- sin(6°)/cos(6°)
- ± sin 6°/√(1 - sin²(6°))
- ± √(1 - cos²(6°))/cos 6°
- ± 1/√(cosec²(6°) - 1)
- ± √(sec²(6°) - 1)
- 1/cot 6°
Note: Since 6° lies in the 1st Quadrant, the final value of tan 6° will be positive.
We can use trigonometric identities to represent tan 6° as,
- cot(90° - 6°) = cot 84°
- -cot(90° + 6°) = -cot 96°
- -tan (180° - 6°) = -tan 174°
☛ Also Check:
Examples Using Tan 6 Degrees
-
Example 1: Find the value of 2 tan(6°)/3 tan(174°).
Solution:
Using trigonometric identities, we know, tan(6°) = -tan(180° - 6°) = -tan 174°.
⇒ tan(6°) = -tan(174°)
⇒ Value of 2 tan(6°)/3 tan(174°) = -2/3 -
Example 2: Using the value of tan 6°, solve: (sec²(6°) - 1).
Solution:
We know, (sec²(6°) - 1) = (tan²(6°)) = 0.011
⇒ (sec²(6°) - 1) = 0.011 -
Example 3: Find the value of tan 6° if cot 6° is 9.5143.
Solution:
Since, tan 6° = 1/cot 6°
⇒ tan 6° = 1/9.5143 = 0.1051
FAQs on Tan 6 Degrees
What is Tan 6 Degrees?
Tan 6 degrees is the value of tangent trigonometric function for an angle equal to 6 degrees. The value of tan 6° is 0.1051 (approx).
How to Find Tan 6° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of tan 6° can be given in terms of other trigonometric functions as:
- sin(6°)/cos(6°)
- ± sin 6°/√(1 - sin²(6°))
- ± √(1 - cos²(6°))/cos 6°
- ± 1/√(cosec²(6°) - 1)
- ± √(sec²(6°) - 1)
- 1/cot 6°
☛ Also check: trigonometric table
What is the Value of Tan 6° in Terms of Cosec 6°?
Since the tangent function can be represented using the cosecant function, we can write tan 6° as 1/√(cosec²(6°) - 1). The value of cosec 6° is equal to 9.56677.
How to Find the Value of Tan 6 Degrees?
The value of tan 6 degrees can be calculated by constructing an angle of 6° with the x-axis, and then finding the coordinates of the corresponding point (0.9945, 0.1045) on the unit circle. The value of tan 6° is equal to the y-coordinate(0.1045) divided by the x-coordinate (0.9945). ∴ tan 6° = 0.1051
What is the Value of Tan 6 Degrees in Terms of Cos 6°?
We know, using trig identities, we can write tan 6° as √(1 - cos²(6°))/cos 6°. Here, the value of cos 6° is equal to 0.994521.
visual curriculum