Tan 2 Degrees
The value of tan 2 degrees is 0.0349207. . .. Tan 2 degrees in radians is written as tan (2° × π/180°), i.e., tan (π/90) or tan (0.034906. . .). In this article, we will discuss the methods to find the value of tan 2 degrees with examples.
- Tan 2° in decimal: 0.0349207. . .
- Tan (-2 degrees): -0.0349207. . .
- Tan 2° in radians: tan (π/90) or tan (0.0349065 . . .)
What is the Value of Tan 2 Degrees?
The value of tan 2 degrees in decimal is 0.034920769. . .. Tan 2 degrees can also be expressed using the equivalent of the given angle (2 degrees) in radians (0.03490 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 2 degrees = 2° × (π/180°) rad = π/90 or 0.0349 . . .
∴ tan 2° = tan(0.0349) = 0.0349207. . .
Explanation:
For tan 2 degrees, the angle 2° lies between 0° and 90° (First Quadrant). Since tangent function is positive in the first quadrant, thus tan 2° value = 0.0349207. . .
Since the tangent function is a periodic function, we can represent tan 2° as, tan 2 degrees = tan(2° + n × 180°), n ∈ Z.
⇒ tan 2° = tan 182° = tan 362°, and so on.
Note: Since, tangent is an odd function, the value of tan(-2°) = -tan(2°).
Methods to Find Value of Tan 2 Degrees
The tangent function is positive in the 1st quadrant. The value of tan 2° is given as 0.03492. . .. We can find the value of tan 2 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Tan 2° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the tan 2 degrees as:
- sin(2°)/cos(2°)
- ± sin 2°/√(1 - sin²(2°))
- ± √(1 - cos²(2°))/cos 2°
- ± 1/√(cosec²(2°) - 1)
- ± √(sec²(2°) - 1)
- 1/cot 2°
Note: Since 2° lies in the 1st Quadrant, the final value of tan 2° will be positive.
We can use trigonometric identities to represent tan 2° as,
- cot(90° - 2°) = cot 88°
- -cot(90° + 2°) = -cot 92°
- -tan (180° - 2°) = -tan 178°
Tan 2 Degrees Using Unit Circle
To find the value of tan 2 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 2° angle with the positive x-axis.
- The tan of 2 degrees equals the y-coordinate(0.0349) divided by x-coordinate(0.9994) of the point of intersection (0.9994, 0.0349) of unit circle and r.
Hence the value of tan 2° = y/x = 0.0349 (approx).
☛ Also Check:
Examples Using Tan 2 Degrees
-
Example 1: Find the value of tan 2° if cot 2° is 28.6362.
Solution:
Since, tan 2° = 1/cot 2°
⇒ tan 2° = 1/28.6362 = 0.0349 -
Example 2: Using the value of tan 2°, solve: (sec²(2°) - 1).
Solution:
We know, (sec²(2°) - 1) = (tan²(2°)) = 0.0012
⇒ (sec²(2°) - 1) = 0.0012 -
Example 3: Find the value of 6 tan(2°)/9 tan(178°).
Solution:
Using trigonometric identities, we know, tan(2°) = -tan(180° - 2°) = -tan 178°.
⇒ tan(2°) = -tan(178°)
⇒ Value of 6 tan(2°)/9 tan(178°) = -6/9 = -2/3
FAQs on Tan 2 Degrees
What is Tan 2 Degrees?
Tan 2 degrees is the value of tangent trigonometric function for an angle equal to 2 degrees. The value of tan 2° is 0.0349 (approx).
How to Find the Value of Tan 2 Degrees?
The value of tan 2 degrees can be calculated by constructing an angle of 2° with the x-axis, and then finding the coordinates of the corresponding point (0.9994, 0.0349) on the unit circle. The value of tan 2° is equal to the y-coordinate(0.0349) divided by the x-coordinate (0.9994). ∴ tan 2° = 0.0349
How to Find Tan 2° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of tan 2° can be given in terms of other trigonometric functions as:
- sin(2°)/cos(2°)
- ± sin 2°/√(1 - sin²(2°))
- ± √(1 - cos²(2°))/cos 2°
- ± 1/√(cosec²(2°) - 1)
- ± √(sec²(2°) - 1)
- 1/cot 2°
☛ Also check: trigonometry table
What is the Value of Tan 2° in Terms of Sec 2°?
We can represent the tangent function in terms of the secant function using trig identities, tan 2° can be written as √(sec²(2°) - 1). Here, the value of sec 2° is equal to 1.0006.
What is the Value of Tan 2 Degrees in Terms of Cot 2°?
Since the tangent function is the reciprocal of the cotangent function, we can write tan 2° as 1/cot(2°). The value of cot 2° is equal to 28.63625.
visual curriculum