Tan 1 Degrees
The value of tan 1 degrees is 0.0174550. . .. Tan 1 degrees in radians is written as tan (1° × π/180°), i.e., tan (0.017453. . .). In this article, we will discuss the methods to find the value of tan 1 degrees with examples.
- Tan 1° in decimal: 0.0174550. . .
- Tan (-1 degrees): -0.0174550. . .
- Tan 1° in radians: tan (0.0174532 . . .)
What is the Value of Tan 1 Degrees?
The value of tan 1 degrees in decimal is 0.017455064. . .. Tan 1 degrees can also be expressed using the equivalent of the given angle (1 degrees) in radians (0.01745 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 1 degrees = 1° × (π/180°) rad = 0.0174 . . .
∴ tan 1° = tan(0.0174) = 0.0174550. . .
Explanation:
For tan 1 degrees, the angle 1° lies between 0° and 90° (First Quadrant). Since tangent function is positive in the first quadrant, thus tan 1° value = 0.0174550. . .
Since the tangent function is a periodic function, we can represent tan 1° as, tan 1 degrees = tan(1° + n × 180°), n ∈ Z.
⇒ tan 1° = tan 181° = tan 361°, and so on.
Note: Since, tangent is an odd function, the value of tan(-1°) = -tan(1°).
Methods to Find Value of Tan 1 Degrees
The tangent function is positive in the 1st quadrant. The value of tan 1° is given as 0.01745. . .. We can find the value of tan 1 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Tan 1 Degrees Using Unit Circle
To find the value of tan 1 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 1° angle with the positive x-axis.
- The tan of 1 degrees equals the y-coordinate(0.0175) divided by x-coordinate(0.9998) of the point of intersection (0.9998, 0.0175) of unit circle and r.
Hence the value of tan 1° = y/x = 0.0175 (approx).
Tan 1° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the tan 1 degrees as:
- sin(1°)/cos(1°)
- ± sin 1°/√(1 - sin²(1°))
- ± √(1 - cos²(1°))/cos 1°
- ± 1/√(cosec²(1°) - 1)
- ± √(sec²(1°) - 1)
- 1/cot 1°
Note: Since 1° lies in the 1st Quadrant, the final value of tan 1° will be positive.
We can use trigonometric identities to represent tan 1° as,
- cot(90° - 1°) = cot 89°
- -cot(90° + 1°) = -cot 91°
- -tan (180° - 1°) = -tan 179°
☛ Also Check:
Examples Using Tan 1 Degrees
-
Example 1: Using the value of tan 1°, solve: (sec²(1°) - 1).
Solution:
We know, (sec²(1°) - 1) = (tan²(1°)) = 0.0003
⇒ (sec²(1°) - 1) = 0.0003 -
Example 2: Simplify: 8 (tan 1°/cot 89°)
Solution:
We know tan 1° = cot 89°
⇒ 8 tan 1°/cot 89° = 8 (tan 1°/tan 1°)
= 8(1) = 8 -
Example 3: Find the value of 5 tan(1°)/10 tan(179°).
Solution:
Using trigonometric identities, we know, tan(1°) = -tan(180° - 1°) = -tan 179°.
⇒ tan(1°) = -tan(179°)
⇒ Value of 5 tan(1°)/10 tan(179°) = -5/10 = -1/2
FAQs on Tan 1 Degrees
What is Tan 1 Degrees?
Tan 1 degrees is the value of tangent trigonometric function for an angle equal to 1 degrees. The value of tan 1° is 0.0175 (approx).
What is the Exact Value of tan 1 Degrees?
The exact value of tan 1 degrees can be given accurately up to 8 decimal places as 0.01745506.
How to Find the Value of Tan 1 Degrees?
The value of tan 1 degrees can be calculated by constructing an angle of 1° with the x-axis, and then finding the coordinates of the corresponding point (0.9998, 0.0175) on the unit circle. The value of tan 1° is equal to the y-coordinate(0.0175) divided by the x-coordinate (0.9998). ∴ tan 1° = 0.0175
What is the Value of Tan 1 Degrees in Terms of Sin 1°?
Using trigonometric identities, we can write tan 1° in terms of sin 1° as, tan(1°) = sin 1°/√(1 - sin²(1°)) . Here, the value of sin 1° is equal to 0.0175.
How to Find Tan 1° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of tan 1° can be given in terms of other trigonometric functions as:
- sin(1°)/cos(1°)
- ± sin 1°/√(1 - sin²(1°))
- ± √(1 - cos²(1°))/cos 1°
- ± 1/√(cosec²(1°) - 1)
- ± √(sec²(1°) - 1)
- 1/cot 1°
☛ Also check: trigonometric table
visual curriculum