Sin 80 Degrees
The value of sin 80 degrees is 0.9848077. . .. Sin 80 degrees in radians is written as sin (80° × π/180°), i.e., sin (4π/9) or sin (1.396263. . .). In this article, we will discuss the methods to find the value of sin 80 degrees with examples.
- Sin 80°: 0.9848077. . .
- Sin (-80 degrees): -0.9848077. . .
- Sin 80° in radians: sin (4π/9) or sin (1.3962634 . . .)
What is the Value of Sin 80 Degrees?
The value of sin 80 degrees in decimal is 0.984807753. . .. Sin 80 degrees can also be expressed using the equivalent of the given angle (80 degrees) in radians (1.39626 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 80 degrees = 80° × (π/180°) rad = 4π/9 or 1.3962 . . .
∴ sin 80° = sin(1.3962) = 0.9848077. . .
Explanation:
For sin 80 degrees, the angle 80° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 80° value = 0.9848077. . .
Since the sine function is a periodic function, we can represent sin 80° as, sin 80 degrees = sin(80° + n × 360°), n ∈ Z.
⇒ sin 80° = sin 440° = sin 800°, and so on.
Note: Since, sine is an odd function, the value of sin(-80°) = -sin(80°).
Methods to Find Value of Sin 80 Degrees
The sine function is positive in the 1st quadrant. The value of sin 80° is given as 0.98480. . .. We can find the value of sin 80 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Sin 80 Degrees Using Unit Circle
To find the value of sin 80 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 80° angle with the positive x-axis.
- The sin of 80 degrees equals the y-coordinate(0.9848) of the point of intersection (0.1736, 0.9848) of unit circle and r.
Hence the value of sin 80° = y = 0.9848 (approx)
Sin 80° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 80 degrees as:
- ± √(1-cos²(80°))
- ± tan 80°/√(1 + tan²(80°))
- ± 1/√(1 + cot²(80°))
- ± √(sec²(80°) - 1)/sec 80°
- 1/cosec 80°
Note: Since 80° lies in the 1st Quadrant, the final value of sin 80° will be positive.
We can use trigonometric identities to represent sin 80° as,
- sin(180° - 80°) = sin 100°
- -sin(180° + 80°) = -sin 260°
- cos(90° - 80°) = cos 10°
- -cos(90° + 80°) = -cos 170°
☛ Also Check:
Examples Using Sin 80 Degrees
-
Example 1: Find the value of 5 sin(80°)/7 cos(10°).
Solution:
Using trigonometric identities, we know, sin(80°) = cos(90° - 80°) = cos 10°.
⇒ sin(80°) = cos(10°)
⇒ Value of 5 sin(80°)/7 cos(10°) = 5/7 -
Example 2: Using the value of sin 80°, solve: (1-cos²(80°)).
Solution:
We know, (1-cos²(80°)) = (sin²(80°)) = 0.9698
⇒ (1-cos²(80°)) = 0.9698 -
Example 3: Find the value of 2 × (sin 40° cos 40°). [Hint: Use sin 80° = 0.9848]
Solution:
Using the sin 2a formula,
2 sin 40° cos 40° = sin(2 × 40°) = sin 80°
∵ sin 80° = 0.9848
⇒ 2 × (sin 40° cos 40°) = 0.9848
FAQs on Sin 80 Degrees
What is Sin 80 Degrees?
Sin 80 degrees is the value of sine trigonometric function for an angle equal to 80 degrees. The value of sin 80° is 0.9848 (approx).
How to Find Sin 80° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 80° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(80°))
- ± tan 80°/√(1 + tan²(80°))
- ± 1/√(1 + cot²(80°))
- ± √(sec²(80°) - 1)/sec 80°
- 1/cosec 80°
☛ Also check: trigonometric table
How to Find the Value of Sin 80 Degrees?
The value of sin 80 degrees can be calculated by constructing an angle of 80° with the x-axis, and then finding the coordinates of the corresponding point (0.1736, 0.9848) on the unit circle. The value of sin 80° is equal to the y-coordinate (0.9848). ∴ sin 80° = 0.9848.
What is the Value of Sin 80 Degrees in Terms of Cos 80°?
Using trigonometric identities, we can write sin 80° in terms of cos 80° as, sin(80°) = √(1-cos²(80°)). Here, the value of cos 80° is equal to 0.1736481.
What is the Exact Value of sin 80 Degrees?
The exact value of sin 80 degrees can be given accurately up to 8 decimal places as 0.98480775.
visual curriculum