Sin 6 Degrees
The value of sin 6 degrees is 0.1045284. . .. Sin 6 degrees in radians is written as sin (6° × π/180°), i.e., sin (π/30) or sin (0.104719. . .). In this article, we will discuss the methods to find the value of sin 6 degrees with examples.
- Sin 6°: 0.1045284. . .
- Sin (-6 degrees): -0.1045284. . .
- Sin 6° in radians: sin (π/30) or sin (0.1047197 . . .)
What is the Value of Sin 6 Degrees?
The value of sin 6 degrees in decimal is 0.104528463. . .. Sin 6 degrees can also be expressed using the equivalent of the given angle (6 degrees) in radians (0.10471 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 6 degrees = 6° × (π/180°) rad = π/30 or 0.1047 . . .
∴ sin 6° = sin(0.1047) = 0.1045284. . .
Explanation:
For sin 6 degrees, the angle 6° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 6° value = 0.1045284. . .
Since the sine function is a periodic function, we can represent sin 6° as, sin 6 degrees = sin(6° + n × 360°), n ∈ Z.
⇒ sin 6° = sin 366° = sin 726°, and so on.
Note: Since, sine is an odd function, the value of sin(-6°) = -sin(6°).
Methods to Find Value of Sin 6 Degrees
The sine function is positive in the 1st quadrant. The value of sin 6° is given as 0.10452. . .. We can find the value of sin 6 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Sin 6° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 6 degrees as:
- ± √(1-cos²(6°))
- ± tan 6°/√(1 + tan²(6°))
- ± 1/√(1 + cot²(6°))
- ± √(sec²(6°) - 1)/sec 6°
- 1/cosec 6°
Note: Since 6° lies in the 1st Quadrant, the final value of sin 6° will be positive.
We can use trigonometric identities to represent sin 6° as,
- sin(180° - 6°) = sin 174°
- -sin(180° + 6°) = -sin 186°
- cos(90° - 6°) = cos 84°
- -cos(90° + 6°) = -cos 96°
Sin 6 Degrees Using Unit Circle
To find the value of sin 6 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 6° angle with the positive x-axis.
- The sin of 6 degrees equals the y-coordinate(0.1045) of the point of intersection (0.9945, 0.1045) of unit circle and r.
Hence the value of sin 6° = y = 0.1045 (approx)
☛ Also Check:
Examples Using Sin 6 Degrees
-
Example 1: Simplify: 2 (sin 6°/sin 366°)
Solution:
We know sin 6° = sin 366°
⇒ 2 sin 6°/sin 366° = 2(sin 6°/sin 6°)
= 2(1) = 2 -
Example 2: Using the value of sin 6°, solve: (1-cos²(6°)).
Solution:
We know, (1-cos²(6°)) = (sin²(6°)) = 0.0109
⇒ (1-cos²(6°)) = 0.0109 -
Example 3: Find the value of 2 × (sin 3° cos 3°). [Hint: Use sin 6° = 0.1045]
Solution:
Using the sin 2a formula,
2 sin 3° cos 3° = sin(2 × 3°) = sin 6°
∵ sin 6° = 0.1045
⇒ 2 × (sin 3° cos 3°) = 0.1045
FAQs on Sin 6 Degrees
What is Sin 6 Degrees?
Sin 6 degrees is the value of sine trigonometric function for an angle equal to 6 degrees. The value of sin 6° is 0.1045 (approx).
How to Find the Value of Sin 6 Degrees?
The value of sin 6 degrees can be calculated by constructing an angle of 6° with the x-axis, and then finding the coordinates of the corresponding point (0.9945, 0.1045) on the unit circle. The value of sin 6° is equal to the y-coordinate (0.1045). ∴ sin 6° = 0.1045.
How to Find Sin 6° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 6° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(6°))
- ± tan 6°/√(1 + tan²(6°))
- ± 1/√(1 + cot²(6°))
- ± √(sec²(6°) - 1)/sec 6°
- 1/cosec 6°
☛ Also check: trigonometric table
What is the Exact Value of sin 6 Degrees?
The exact value of sin 6 degrees can be given accurately up to 8 decimal places as 0.10452846.
What is the Value of Sin 6 Degrees in Terms of Cos 6°?
Using trigonometric identities, we can write sin 6° in terms of cos 6° as, sin(6°) = √(1-cos²(6°)). Here, the value of cos 6° is equal to 0.9945218.
visual curriculum