Sin 43 Degrees
The value of sin 43 degrees is 0.6819983. . .. Sin 43 degrees in radians is written as sin (43° × π/180°), i.e., sin (0.750491. . .). In this article, we will discuss the methods to find the value of sin 43 degrees with examples.
- Sin 43°: 0.6819983. . .
- Sin (-43 degrees): -0.6819983. . .
- Sin 43° in radians: sin (0.7504915 . . .)
What is the Value of Sin 43 Degrees?
The value of sin 43 degrees in decimal is 0.681998360. . .. Sin 43 degrees can also be expressed using the equivalent of the given angle (43 degrees) in radians (0.75049 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 43 degrees = 43° × (π/180°) rad = 0.7504 . . .
∴ sin 43° = sin(0.7504) = 0.6819983. . .
Explanation:
For sin 43 degrees, the angle 43° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 43° value = 0.6819983. . .
Since the sine function is a periodic function, we can represent sin 43° as, sin 43 degrees = sin(43° + n × 360°), n ∈ Z.
⇒ sin 43° = sin 403° = sin 763°, and so on.
Note: Since, sine is an odd function, the value of sin(-43°) = -sin(43°).
Methods to Find Value of Sin 43 Degrees
The sine function is positive in the 1st quadrant. The value of sin 43° is given as 0.68199. . .. We can find the value of sin 43 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Sin 43 Degrees Using Unit Circle
To find the value of sin 43 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 43° angle with the positive x-axis.
- The sin of 43 degrees equals the y-coordinate(0.682) of the point of intersection (0.7314, 0.682) of unit circle and r.
Hence the value of sin 43° = y = 0.682 (approx)
Sin 43° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 43 degrees as:
- ± √(1-cos²(43°))
- ± tan 43°/√(1 + tan²(43°))
- ± 1/√(1 + cot²(43°))
- ± √(sec²(43°) - 1)/sec 43°
- 1/cosec 43°
Note: Since 43° lies in the 1st Quadrant, the final value of sin 43° will be positive.
We can use trigonometric identities to represent sin 43° as,
- sin(180° - 43°) = sin 137°
- -sin(180° + 43°) = -sin 223°
- cos(90° - 43°) = cos 47°
- -cos(90° + 43°) = -cos 133°
☛ Also Check:
Examples Using Sin 43 Degrees
-
Example 1: Find the value of 5 sin(43°)/7 cos(47°).
Solution:
Using trigonometric identities, we know, sin(43°) = cos(90° - 43°) = cos 47°.
⇒ sin(43°) = cos(47°)
⇒ Value of 5 sin(43°)/7 cos(47°) = 5/7 -
Example 2: Find the value of 2 × (sin 21.5° cos 21.5°). [Hint: Use sin 43° = 0.682]
Solution:
Using the sin 2a formula,
2 sin 21.5° cos 21.5° = sin(2 × 21.5°) = sin 43°
∵ sin 43° = 0.682
⇒ 2 × (sin 21.5° cos 21.5°) = 0.682 -
Example 3: Simplify: 2 (sin 43°/sin 403°)
Solution:
We know sin 43° = sin 403°
⇒ 2 sin 43°/sin 403° = 2(sin 43°/sin 43°)
= 2(1) = 2
FAQs on Sin 43 Degrees
What is Sin 43 Degrees?
Sin 43 degrees is the value of sine trigonometric function for an angle equal to 43 degrees. The value of sin 43° is 0.682 (approx).
How to Find the Value of Sin 43 Degrees?
The value of sin 43 degrees can be calculated by constructing an angle of 43° with the x-axis, and then finding the coordinates of the corresponding point (0.7314, 0.682) on the unit circle. The value of sin 43° is equal to the y-coordinate (0.682). ∴ sin 43° = 0.682.
What is the Value of Sin 43° in Terms of Cosec 43°?
Since the cosecant function is the reciprocal of the sine function, we can write sin 43° as 1/cosec(43°). The value of cosec 43° is equal to 1.46627.
What is the Value of Sin 43 Degrees in Terms of Cos 43°?
Using trigonometric identities, we can write sin 43° in terms of cos 43° as, sin(43°) = √(1-cos²(43°)). Here, the value of cos 43° is equal to 0.7313537.
How to Find Sin 43° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 43° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(43°))
- ± tan 43°/√(1 + tan²(43°))
- ± 1/√(1 + cot²(43°))
- ± √(sec²(43°) - 1)/sec 43°
- 1/cosec 43°
☛ Also check: trigonometric table
visual curriculum