Sin 4 Degrees
The value of sin 4 degrees is 0.0697564. . .. Sin 4 degrees in radians is written as sin (4° × π/180°), i.e., sin (π/45) or sin (0.069813. . .). In this article, we will discuss the methods to find the value of sin 4 degrees with examples.
- Sin 4°: 0.0697564. . .
- Sin (-4 degrees): -0.0697564. . .
- Sin 4° in radians: sin (π/45) or sin (0.0698131 . . .)
What is the Value of Sin 4 Degrees?
The value of sin 4 degrees in decimal is 0.069756473. . .. Sin 4 degrees can also be expressed using the equivalent of the given angle (4 degrees) in radians (0.06981 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 4 degrees = 4° × (π/180°) rad = π/45 or 0.0698 . . .
∴ sin 4° = sin(0.0698) = 0.0697564. . .
Explanation:
For sin 4 degrees, the angle 4° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 4° value = 0.0697564. . .
Since the sine function is a periodic function, we can represent sin 4° as, sin 4 degrees = sin(4° + n × 360°), n ∈ Z.
⇒ sin 4° = sin 364° = sin 724°, and so on.
Note: Since, sine is an odd function, the value of sin(-4°) = -sin(4°).
Methods to Find Value of Sin 4 Degrees
The sine function is positive in the 1st quadrant. The value of sin 4° is given as 0.06975. . .. We can find the value of sin 4 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Sin 4 Degrees Using Unit Circle
To find the value of sin 4 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 4° angle with the positive x-axis.
- The sin of 4 degrees equals the y-coordinate(0.0698) of the point of intersection (0.9976, 0.0698) of unit circle and r.
Hence the value of sin 4° = y = 0.0698 (approx)
Sin 4° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 4 degrees as:
- ± √(1-cos²(4°))
- ± tan 4°/√(1 + tan²(4°))
- ± 1/√(1 + cot²(4°))
- ± √(sec²(4°) - 1)/sec 4°
- 1/cosec 4°
Note: Since 4° lies in the 1st Quadrant, the final value of sin 4° will be positive.
We can use trigonometric identities to represent sin 4° as,
- sin(180° - 4°) = sin 176°
- -sin(180° + 4°) = -sin 184°
- cos(90° - 4°) = cos 86°
- -cos(90° + 4°) = -cos 94°
☛ Also Check:
Examples Using Sin 4 Degrees
-
Example 1: Using the value of sin 4°, solve: (1-cos²(4°)).
Solution:
We know, (1-cos²(4°)) = (sin²(4°)) = 0.0049
⇒ (1-cos²(4°)) = 0.0049 -
Example 2: Find the value of sin 4° if cosec 4° is 14.3355.
Solution:
Since, sin 4° = 1/csc 4°
⇒ sin 4° = 1/14.3355 = 0.0698 -
Example 3: Find the value of 2 × (sin 2° cos 2°). [Hint: Use sin 4° = 0.0698]
Solution:
Using the sin 2a formula,
2 sin 2° cos 2° = sin(2 × 2°) = sin 4°
∵ sin 4° = 0.0698
⇒ 2 × (sin 2° cos 2°) = 0.0698
FAQs on Sin 4 Degrees
What is Sin 4 Degrees?
Sin 4 degrees is the value of sine trigonometric function for an angle equal to 4 degrees. The value of sin 4° is 0.0698 (approx).
How to Find the Value of Sin 4 Degrees?
The value of sin 4 degrees can be calculated by constructing an angle of 4° with the x-axis, and then finding the coordinates of the corresponding point (0.9976, 0.0698) on the unit circle. The value of sin 4° is equal to the y-coordinate (0.0698). ∴ sin 4° = 0.0698.
What is the Value of Sin 4 Degrees in Terms of Cot 4°?
We can represent the sine function in terms of the cotangent function using trig identities, sin 4° can be written as 1/√(1 + cot²(4°)). Here, the value of cot 4° is equal to 14.30066.
How to Find Sin 4° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 4° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(4°))
- ± tan 4°/√(1 + tan²(4°))
- ± 1/√(1 + cot²(4°))
- ± √(sec²(4°) - 1)/sec 4°
- 1/cosec 4°
☛ Also check: trigonometric table
What is the Exact Value of sin 4 Degrees?
The exact value of sin 4 degrees can be given accurately up to 8 decimal places as 0.06975647.
visual curriculum