Sin 3 Degrees
The value of sin 3 degrees is 0.0523359. . .. Sin 3 degrees in radians is written as sin (3° × π/180°), i.e., sin (π/60) or sin (0.052359. . .). In this article, we will discuss the methods to find the value of sin 3 degrees with examples.
- Sin 3°: 0.0523359. . .
- Sin (-3 degrees): -0.0523359. . .
- Sin 3° in radians: sin (π/60) or sin (0.0523598 . . .)
What is the Value of Sin 3 Degrees?
The value of sin 3 degrees in decimal is 0.052335956. . .. Sin 3 degrees can also be expressed using the equivalent of the given angle (3 degrees) in radians (0.05235 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 3 degrees = 3° × (π/180°) rad = π/60 or 0.0523 . . .
∴ sin 3° = sin(0.0523) = 0.0523359. . .
Explanation:
For sin 3 degrees, the angle 3° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 3° value = 0.0523359. . .
Since the sine function is a periodic function, we can represent sin 3° as, sin 3 degrees = sin(3° + n × 360°), n ∈ Z.
⇒ sin 3° = sin 363° = sin 723°, and so on.
Note: Since, sine is an odd function, the value of sin(-3°) = -sin(3°).
Methods to Find Value of Sin 3 Degrees
The sine function is positive in the 1st quadrant. The value of sin 3° is given as 0.05233. . .. We can find the value of sin 3 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Sin 3 Degrees Using Unit Circle
To find the value of sin 3 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 3° angle with the positive x-axis.
- The sin of 3 degrees equals the y-coordinate(0.0523) of the point of intersection (0.9986, 0.0523) of unit circle and r.
Hence the value of sin 3° = y = 0.0523 (approx)
Sin 3° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 3 degrees as:
- ± √(1-cos²(3°))
- ± tan 3°/√(1 + tan²(3°))
- ± 1/√(1 + cot²(3°))
- ± √(sec²(3°) - 1)/sec 3°
- 1/cosec 3°
Note: Since 3° lies in the 1st Quadrant, the final value of sin 3° will be positive.
We can use trigonometric identities to represent sin 3° as,
- sin(180° - 3°) = sin 177°
- -sin(180° + 3°) = -sin 183°
- cos(90° - 3°) = cos 87°
- -cos(90° + 3°) = -cos 93°
☛ Also Check:
Examples Using Sin 3 Degrees
-
Example 1: Find the value of sin 3° if cosec 3° is 19.1073.
Solution:
Since, sin 3° = 1/csc 3°
⇒ sin 3° = 1/19.1073 = 0.0523 -
Example 2: Find the value of 2 × (sin 1.5° cos 1.5°). [Hint: Use sin 3° = 0.0523]
Solution:
Using the sin 2a formula,
2 sin 1.5° cos 1.5° = sin(2 × 1.5°) = sin 3°
∵ sin 3° = 0.0523
⇒ 2 × (sin 1.5° cos 1.5°) = 0.0523 -
Example 3: Simplify: 2 (sin 3°/sin 363°)
Solution:
We know sin 3° = sin 363°
⇒ 2 sin 3°/sin 363° = 2(sin 3°/sin 3°)
= 2(1) = 2
FAQs on Sin 3 Degrees
What is Sin 3 Degrees?
Sin 3 degrees is the value of sine trigonometric function for an angle equal to 3 degrees. The value of sin 3° is 0.0523 (approx).
How to Find the Value of Sin 3 Degrees?
The value of sin 3 degrees can be calculated by constructing an angle of 3° with the x-axis, and then finding the coordinates of the corresponding point (0.9986, 0.0523) on the unit circle. The value of sin 3° is equal to the y-coordinate (0.0523). ∴ sin 3° = 0.0523.
How to Find Sin 3° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 3° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(3°))
- ± tan 3°/√(1 + tan²(3°))
- ± 1/√(1 + cot²(3°))
- ± √(sec²(3°) - 1)/sec 3°
- 1/cosec 3°
☛ Also check: trigonometry table
What is the Value of Sin 3 Degrees in Terms of Tan 3°?
We know, using trig identities, we can write sin 3° as tan 3°/√(1 + tan²(3°)). Here, the value of tan 3° is equal to 0.052407.
What is the Exact Value of sin 3 Degrees?
The exact value of sin 3 degrees can be given accurately up to 8 decimal places as 0.05233595.
visual curriculum