Sin 29 Degrees
The value of sin 29 degrees is 0.4848096. . .. Sin 29 degrees in radians is written as sin (29° × π/180°), i.e., sin (0.506145. . .). In this article, we will discuss the methods to find the value of sin 29 degrees with examples.
- Sin 29°: 0.4848096. . .
- Sin (-29 degrees): -0.4848096. . .
- Sin 29° in radians: sin (0.5061454 . . .)
What is the Value of Sin 29 Degrees?
The value of sin 29 degrees in decimal is 0.484809620. . .. Sin 29 degrees can also be expressed using the equivalent of the given angle (29 degrees) in radians (0.50614 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 29 degrees = 29° × (π/180°) rad = 0.5061 . . .
∴ sin 29° = sin(0.5061) = 0.4848096. . .
Explanation:
For sin 29 degrees, the angle 29° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 29° value = 0.4848096. . .
Since the sine function is a periodic function, we can represent sin 29° as, sin 29 degrees = sin(29° + n × 360°), n ∈ Z.
⇒ sin 29° = sin 389° = sin 749°, and so on.
Note: Since, sine is an odd function, the value of sin(-29°) = -sin(29°).
Methods to Find Value of Sin 29 Degrees
The sine function is positive in the 1st quadrant. The value of sin 29° is given as 0.48480. . .. We can find the value of sin 29 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Sin 29° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 29 degrees as:
- ± √(1-cos²(29°))
- ± tan 29°/√(1 + tan²(29°))
- ± 1/√(1 + cot²(29°))
- ± √(sec²(29°) - 1)/sec 29°
- 1/cosec 29°
Note: Since 29° lies in the 1st Quadrant, the final value of sin 29° will be positive.
We can use trigonometric identities to represent sin 29° as,
- sin(180° - 29°) = sin 151°
- -sin(180° + 29°) = -sin 209°
- cos(90° - 29°) = cos 61°
- -cos(90° + 29°) = -cos 119°
Sin 29 Degrees Using Unit Circle
To find the value of sin 29 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 29° angle with the positive x-axis.
- The sin of 29 degrees equals the y-coordinate(0.4848) of the point of intersection (0.8746, 0.4848) of unit circle and r.
Hence the value of sin 29° = y = 0.4848 (approx)
☛ Also Check:
Examples Using Sin 29 Degrees
-
Example 1: Find the value of 5 sin(29°)/7 cos(61°).
Solution:
Using trigonometric identities, we know, sin(29°) = cos(90° - 29°) = cos 61°.
⇒ sin(29°) = cos(61°)
⇒ Value of 5 sin(29°)/7 cos(61°) = 5/7 -
Example 2: Find the value of sin 29° if cosec 29° is 2.0626.
Solution:
Since, sin 29° = 1/csc 29°
⇒ sin 29° = 1/2.0626 = 0.4848 -
Example 3: Find the value of 2 × (sin 14.5° cos 14.5°). [Hint: Use sin 29° = 0.4848]
Solution:
Using the sin 2a formula,
2 sin 14.5° cos 14.5° = sin(2 × 14.5°) = sin 29°
∵ sin 29° = 0.4848
⇒ 2 × (sin 14.5° cos 14.5°) = 0.4848
FAQs on Sin 29 Degrees
What is Sin 29 Degrees?
Sin 29 degrees is the value of sine trigonometric function for an angle equal to 29 degrees. The value of sin 29° is 0.4848 (approx).
What is the Value of Sin 29 Degrees in Terms of Cos 29°?
Using trigonometric identities, we can write sin 29° in terms of cos 29° as, sin(29°) = √(1-cos²(29°)). Here, the value of cos 29° is equal to 0.8746197.
How to Find Sin 29° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 29° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(29°))
- ± tan 29°/√(1 + tan²(29°))
- ± 1/√(1 + cot²(29°))
- ± √(sec²(29°) - 1)/sec 29°
- 1/cosec 29°
☛ Also check: trigonometry table
How to Find the Value of Sin 29 Degrees?
The value of sin 29 degrees can be calculated by constructing an angle of 29° with the x-axis, and then finding the coordinates of the corresponding point (0.8746, 0.4848) on the unit circle. The value of sin 29° is equal to the y-coordinate (0.4848). ∴ sin 29° = 0.4848.
What is the Value of Sin 29° in Terms of Cosec 29°?
Since the cosecant function is the reciprocal of the sine function, we can write sin 29° as 1/cosec(29°). The value of cosec 29° is equal to 2.06266.
visual curriculum