Sin 1 Degrees
The value of sin 1 degrees is 0.0174524. . .. Sin 1 degrees in radians is written as sin (1° × π/180°), i.e., sin (0.017453. . .). In this article, we will discuss the methods to find the value of sin 1 degrees with examples.
- Sin 1°: 0.0174524. . .
- Sin (-1 degrees): -0.0174524. . .
- Sin 1° in radians: sin (0.0174532 . . .)
What is the Value of Sin 1 Degrees?
The value of sin 1 degrees in decimal is 0.017452406. . .. Sin 1 degrees can also be expressed using the equivalent of the given angle (1 degrees) in radians (0.01745 . . .).
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 1 degrees = 1° × (π/180°) rad = 0.0174 . . .
∴ sin 1° = sin(0.0174) = 0.0174524. . .
Explanation:
For sin 1 degrees, the angle 1° lies between 0° and 90° (First Quadrant). Since sine function is positive in the first quadrant, thus sin 1° value = 0.0174524. . .
Since the sine function is a periodic function, we can represent sin 1° as, sin 1 degrees = sin(1° + n × 360°), n ∈ Z.
⇒ sin 1° = sin 361° = sin 721°, and so on.
Note: Since, sine is an odd function, the value of sin(-1°) = -sin(1°).
Methods to Find Value of Sin 1 Degrees
The sine function is positive in the 1st quadrant. The value of sin 1° is given as 0.01745. . .. We can find the value of sin 1 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Sin 1° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the sin 1 degrees as:
- ± √(1-cos²(1°))
- ± tan 1°/√(1 + tan²(1°))
- ± 1/√(1 + cot²(1°))
- ± √(sec²(1°) - 1)/sec 1°
- 1/cosec 1°
Note: Since 1° lies in the 1st Quadrant, the final value of sin 1° will be positive.
We can use trigonometric identities to represent sin 1° as,
- sin(180° - 1°) = sin 179°
- -sin(180° + 1°) = -sin 181°
- cos(90° - 1°) = cos 89°
- -cos(90° + 1°) = -cos 91°
Sin 1 Degrees Using Unit Circle
To find the value of sin 1 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form a 1° angle with the positive x-axis.
- The sin of 1 degrees equals the y-coordinate(0.0175) of the point of intersection (0.9998, 0.0175) of unit circle and r.
Hence the value of sin 1° = y = 0.0175 (approx)
☛ Also Check:
Examples Using Sin 1 Degrees
-
Example 1: Find the value of 5 sin(1°)/7 cos(89°).
Solution:
Using trigonometric identities, we know, sin(1°) = cos(90° - 1°) = cos 89°.
⇒ sin(1°) = cos(89°)
⇒ Value of 5 sin(1°)/7 cos(89°) = 5/7 -
Example 2: Find the value of 2 × (sin 0.5° cos 0.5°). [Hint: Use sin 1° = 0.0175]
Solution:
Using the sin 2a formula,
2 sin 0.5° cos 0.5° = sin(2 × 0.5°) = sin 1°
∵ sin 1° = 0.0175
⇒ 2 × (sin 0.5° cos 0.5°) = 0.0175 -
Example 3: Find the value of sin 1° if cosec 1° is 57.2986.
Solution:
Since, sin 1° = 1/csc 1°
⇒ sin 1° = 1/57.2986 = 0.0175
FAQs on Sin 1 Degrees
What is Sin 1 Degrees?
Sin 1 degrees is the value of sine trigonometric function for an angle equal to 1 degrees. The value of sin 1° is 0.0175 (approx).
How to Find the Value of Sin 1 Degrees?
The value of sin 1 degrees can be calculated by constructing an angle of 1° with the x-axis, and then finding the coordinates of the corresponding point (0.9998, 0.0175) on the unit circle. The value of sin 1° is equal to the y-coordinate (0.0175). ∴ sin 1° = 0.0175.
What is the Value of Sin 1° in Terms of Cosec 1°?
Since the cosecant function is the reciprocal of the sine function, we can write sin 1° as 1/cosec(1°). The value of cosec 1° is equal to 57.29868.
What is the Value of Sin 1 Degrees in Terms of Cos 1°?
Using trigonometric identities, we can write sin 1° in terms of cos 1° as, sin(1°) = √(1-cos²(1°)). Here, the value of cos 1° is equal to 0.9998476.
How to Find Sin 1° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of sin 1° can be given in terms of other trigonometric functions as:
- ± √(1-cos²(1°))
- ± tan 1°/√(1 + tan²(1°))
- ± 1/√(1 + cot²(1°))
- ± √(sec²(1°) - 1)/sec 1°
- 1/cosec 1°
☛ Also check: trigonometry table
visual curriculum