Cot 1 Degrees
The value of cot 1 degrees is 57.2899616. . .. Cot 1 degrees in radians is written as cot (1° × π/180°), i.e., cot (0.017453. . .). In this article, we will discuss the methods to find the value of cot 1 degrees with examples.
- Cot 1° in decimal: 57.2899616. . .
- Cot (-1 degrees): -57.2899616. . .
- Cot 1° in radians: cot (0.0174532 . . .)
What is the Value of Cot 1 Degrees?
The value of cot 1 degrees in decimal is 57.289961630. . .. Cot 1 degrees can also be expressed using the equivalent of the given angle (1 degrees) in radians (0.01745 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 1 degrees = 1° × (π/180°) rad = 0.0174 . . .
∴ cot 1° = cot(0.0174) = 57.2899616. . .
Explanation:
For cot 1 degrees, the angle 1° lies between 0° and 90° (First Quadrant). Since cotangent function is positive in the first quadrant, thus cot 1° value = 57.2899616. . .
Since the cotangent function is a periodic function, we can represent cot 1° as, cot 1 degrees = cot(1° + n × 180°), n ∈ Z.
⇒ cot 1° = cot 181° = cot 361°, and so on.
Note: Since, cotangent is an odd function, the value of cot(-1°) = -cot(1°).
Methods to Find Value of Cot 1 Degrees
The cotangent function is positive in the 1st quadrant. The value of cot 1° is given as 57.28996. . . We can find the value of cot 1 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Cot 1° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cot 1 degrees as:
- cos(1°)/sin(1°)
- ± cos 1°/√(1 - cos²(1°))
- ± √(1 - sin²(1°))/sin 1°
- ± 1/√(sec²(1°) - 1)
- ± √(cosec²(1°) - 1)
- 1/tan 1°
Note: Since 1° lies in the 1st Quadrant, the final value of cot 1° will be positive.
We can use trigonometric identities to represent cot 1° as,
- tan (90° - 1°) = tan 89°
- -tan (90° + 1°) = -tan 91°
- -cot (180° - 1°) = -cot 179°
Cot 1 Degrees Using Unit Circle
To find the value of cot 1 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 1° angle with the positive x-axis.
- The cot of 1 degrees equals the x-coordinate(0.9998) divided by y-coordinate(0.0175) of the point of intersection (0.9998, 0.0175) of unit circle and r.
Hence the value of cot 1° = x/y = 57.29 (approx).
☛ Also Check:
Examples Using Cot 1 Degrees
-
Example 1: Find the value of 7 cot(1°)/9 cot(179°).
Solution:
Using trigonometric identities, we know, cot(1°) = -cot(180° - 1°) = -cot 179°.
⇒ cot(1°) = -cot(179°)
⇒ Value of 7 cot(1°)/9 cot(179°) = -7/9 -
Example 2: Find the value of cot 1° if tan 1° is 0.0174.
Solution:
Since, cot 1° = 1/tan 1°
⇒ cot 1° = 1/0.0174 = 57.29 -
Example 3: Find the value of (cos (1°) cosec (0.5°) sec (0.5°))/2. [Hint: Use cot 1° = 57.29]
Solution:
Using trigonometry formulas,
(cos (1°) cosec (0.5°) sec (0.5°))/2 = cos (1°)/(2 sin (0.5°) cos (0.5°))
Using sin 2a formula,
2 sin (0.5°) cos (0.5°) = sin (2 × 0.5°) = sin 1°
⇒ cos (1°) / sin (1°) = cot 1°
⇒ (cos (1°) cosec (0.5°) sec (0.5°))/2 = 57.29
FAQs on Cot 1 Degrees
What is Cot 1 Degrees?
Cot 1 degrees is the value of cotangent trigonometric function for an angle equal to 1 degrees. The value of cot 1° is 57.29 (approx).
How to Find the Value of Cot 1 Degrees?
The value of cot 1 degrees can be calculated by constructing an angle of 1° with the x-axis, and then finding the coordinates of the corresponding point (0.9998, 0.0175) on the unit circle. The value of cot 1° is equal to the x-coordinate(0.9998) divided by the y-coordinate (0.0175). ∴ cot 1° = 57.29
How to Find Cot 1° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cot 1° can be given in terms of other trigonometric functions as:
- cos(1°)/sin(1°)
- ± cos 1°/√(1 - cos²(1°))
- ± √(1 - sin²(1°))/sin 1°
- ± 1/√(sec²(1°) - 1)
- ± √(cosec²(1°) - 1)
- 1/tan 1°
☛ Also check: trigonometric table
What is the Value of Cot 1 Degrees in Terms of Cos 1°?
We know, using trig identities, we can write cot 1° as cos 1°/√(1 - cos²(1°)). Here, the value of cos 1° is equal to 0.999847.
What is the Exact Value of Cot 1 Degrees?
The exact value of cot 1 degrees can be given accurately up to 8 decimal places as 57.28996163.
visual curriculum