Cos 7pi/6
The value of cos 7pi/6 is -0.8660254. . .. Cos 7pi/6 radians in degrees is written as cos ((7π/6) × 180°/π), i.e., cos (210°). In this article, we will discuss the methods to find the value of cos 7pi/6 with examples.
- Cos 7pi/6: -√(3)/2
- Cos 7pi/6 in decimal: -0.8660254. . .
- Cos (-7pi/6): -0.8660254. . . or −√3/2
- Cos 7pi/6 in degrees: cos (210°)
What is the Value of Cos 7pi/6?
The value of cos 7pi/6 in decimal is -0.866025403. . .. Cos 7pi/6 can also be expressed using the equivalent of the given angle (7pi/6) in degrees (210°).
We know, using radian to degree conversion, θ in degrees = θ in radians × (180°/pi)
⇒ 7pi/6 radians = 7pi/6 × (180°/pi) = 210° or 210 degrees
∴ cos 7pi/6 = cos 7π/6 = cos(210°) = -√(3)/2 or -0.8660254. . .
Explanation:
For cos 7pi/6, the angle 7pi/6 lies between pi and 3pi/2 (Third Quadrant). Since cosine function is negative in the third quadrant, thus cos 7pi/6 value = -√(3)/2 or -0.8660254. . .
Since the cosine function is a periodic function, we can represent cos 7pi/6 as, cos 7pi/6 = cos(7pi/6 + n × 2pi), n ∈ Z.
⇒ cos 7pi/6 = cos 19pi/6 = cos 31pi/6 , and so on.
Note: Since, cosine is an even function, the value of cos(-7pi/6) = cos(7pi/6).
Methods to Find Value of Cos 7pi/6
The cosine function is negative in the 3rd quadrant. The value of cos 7pi/6 is given as -0.86602. . .. We can find the value of cos 7pi/6 by:
- Using Unit Circle
- Using Trigonometric Functions
Cos 7pi/6 Using Unit Circle
To find the value of cos 7π/6 using the unit circle:
- Rotate ‘r’ anticlockwise to form 7pi/6 angle with the positive x-axis.
- The cos of 7pi/6 equals the x-coordinate(-0.866) of the point of intersection (-0.866, -0.5) of unit circle and r.
Hence the value of cos 7pi/6 = x = -0.866 (approx)
Cos 7pi/6 in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 7pi/6 as:
- ± √(1-sin²(7pi/6))
- ± 1/√(1 + tan²(7pi/6))
- ± cot(7pi/6)/√(1 + cot²(7pi/6))
- ±√(cosec²(7pi/6) - 1)/cosec(7pi/6)
- 1/sec(7pi/6)
Note: Since 7pi/6 lies in the 3rd Quadrant, the final value of cos 7pi/6 will be negative.
We can use trigonometric identities to represent cos 7pi/6 as,
- -cos(pi - 7pi/6) = -cos(-pi/6)
- -cos(pi + 7pi/6) = -cos 13pi/6
- sin(pi/2 + 7pi/6) = sin 5pi/3
- sin(pi/2 - 7pi/6) = sin(-2pi/3)
☛ Also Check:
Examples Using Cos 7pi/6
-
Example 1: Find the value of (cos² 7pi/12 - sin² 7pi/12). [Hint: Use cos 7pi/6 = -0.866]
Solution:
Using the cos 2a formula,
(cos² 7pi/12 - sin² 7pi/12) = cos(2 × 7pi/12) = cos 7pi/6
∵ cos 7pi/6 = -0.866
⇒ (cos² 7pi/12 - sin² 7pi/12) = -0.866 -
Example 2: Simplify: 9 (cos(7pi/6)/sin(5pi/3))
Solution:
We know cos 7pi/6 = sin 5pi/3
⇒ 9 cos(7pi/6)/sin(5pi/3) = 9 (cos(7pi/6)/cos(7pi/6))
= 9(1) = 9 -
Example 3: Find the value of 2 cos(7pi/6)/3 sin(-2pi/3).
Solution:
Using trigonometric identities, we know, cos(7pi/6) = sin(pi/2 - 7pi/6) = sin(-2pi/3).
⇒ cos(7pi/6) = sin(-2pi/3)
⇒ Value of 2 cos(7pi/6)/3 sin(-2pi/3) = 2/3
FAQs on Cos 7pi/6
What is Cos 7pi/6?
Cos 7pi/6 is the value of cosine trigonometric function for an angle equal to 7π/6 radians. The value of cos 7pi/6 is -√(3)/2 or -0.866 (approx)
What is the Value of Cos 7pi/6 in Terms of Sec 7pi/6?
Since the secant function is the reciprocal of the cosine function, we can write cos 7pi/6 as 1/sec(7pi/6). The value of sec 7pi/6 is equal to -1.154700.
What is the Value of Cos 7pi/6 in Terms of Cot 7pi/6?
We can represent the cosine function in terms of the cotangent function using trig identities, cos 7pi/6 can be written as -cot(7pi/6)/√(1 + cot²(7pi/6)). Here, the value of cot 7pi/6 is equal to 1.73205.
How to Find the Value of Cos 7pi/6?
The value of cos 7pi/6 can be calculated by constructing an angle of 7π/6 radians with the x-axis, and then finding the coordinates of the corresponding point (-0.866, -0.5) on the unit circle. The value of cos 7pi/6 is equal to the x-coordinate (-0.866). ∴ cos 7pi/6 = -0.866.
How to Find Cos 7pi/6 in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 7pi/6 can be given in terms of other trigonometric functions as:
- ± √(1-sin²(7pi/6))
- ± 1/√(1 + tan²(7pi/6))
- ± cot(7pi/6)/√(1 + cot²(7pi/6))
- ±√(cosec²(7pi/6) - 1)/cosec(7pi/6)
- 1/sec(7pi/6)
☛ Also check: trigonometric table
visual curriculum