Cos 76 Degrees
The value of cos 76 degrees is 0.2419218. . .. Cos 76 degrees in radians is written as cos (76° × π/180°), i.e., cos (19π/45) or cos (1.326450. . .). In this article, we will discuss the methods to find the value of cos 76 degrees with examples.
- Cos 76°: 0.2419218. . .
- Cos (-76 degrees): 0.2419218. . .
- Cos 76° in radians: cos (19π/45) or cos (1.3264502 . . .)
What is the Value of Cos 76 Degrees?
The value of cos 76 degrees in decimal is 0.241921895. . .. Cos 76 degrees can also be expressed using the equivalent of the given angle (76 degrees) in radians (1.32645 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 76 degrees = 76° × (π/180°) rad = 19π/45 or 1.3264 . . .
∴ cos 76° = cos(1.3264) = 0.2419218. . .
Explanation:
For cos 76 degrees, the angle 76° lies between 0° and 90° (First Quadrant). Since cosine function is positive in the first quadrant, thus cos 76° value = 0.2419218. . .
Since the cosine function is a periodic function, we can represent cos 76° as, cos 76 degrees = cos(76° + n × 360°), n ∈ Z.
⇒ cos 76° = cos 436° = cos 796°, and so on.
Note: Since, cosine is an even function, the value of cos(-76°) = cos(76°).
Methods to Find Value of Cos 76 Degrees
The cosine function is positive in the 1st quadrant. The value of cos 76° is given as 0.24192. . .. We can find the value of cos 76 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Cos 76 Degrees Using Unit Circle
To find the value of cos 76 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 76° angle with the positive x-axis.
- The cos of 76 degrees equals the x-coordinate(0.2419) of the point of intersection (0.2419, 0.9703) of unit circle and r.
Hence the value of cos 76° = x = 0.2419 (approx)
Cos 76° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 76 degrees as:
- ± √(1-sin²(76°))
- ± 1/√(1 + tan²(76°))
- ± cot 76°/√(1 + cot²(76°))
- ±√(cosec²(76°) - 1)/cosec 76°
- 1/sec 76°
Note: Since 76° lies in the 1st Quadrant, the final value of cos 76° will be positive.
We can use trigonometric identities to represent cos 76° as,
- -cos(180° - 76°) = -cos 104°
- -cos(180° + 76°) = -cos 256°
- sin(90° + 76°) = sin 166°
- sin(90° - 76°) = sin 14°
☛ Also Check:
Examples Using Cos 76 Degrees
-
Example 1: Using the value of cos 76°, solve: (1-sin²(76°)).
Solution:
We know, (1-sin²(76°)) = (cos²(76°)) = 0.0585
⇒ (1-sin²(76°)) = 0.0585 -
Example 2: Find the value of cos 76° if sec 76° is 4.1335.
Solution:
Since, cos 76° = 1/sec 76°
⇒ cos 76° = 1/4.1335 = 0.2419 -
Example 3: Find the value of (cos² 38° - sin² 38°). [Hint: Use cos 76° = 0.2419]
Solution:
Using the cos 2a formula,
(cos² 38° - sin² 38°) = cos(2 × 38°) = cos 76°
∵ cos 76° = 0.2419
⇒ (cos² 38° - sin² 38°) = 0.2419
FAQs on Cos 76 Degrees
What is Cos 76 Degrees?
Cos 76 degrees is the value of cosine trigonometric function for an angle equal to 76 degrees. The value of cos 76° is 0.2419 (approx)
What is the Value of Cos 76 Degrees in Terms of Tan 76°?
We know, using trig identities, we can write cos 76° as 1/√(1 + tan²(76°)). Here, the value of tan 76° is equal to 4.010780.
How to Find Cos 76° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 76° can be given in terms of other trigonometric functions as:
- ± √(1-sin²(76°))
- ± 1/√(1 + tan²(76°))
- ± cot 76°/√(1 + cot²(76°))
- ± √(cosec²(76°) - 1)/cosec 76°
- 1/sec 76°
☛ Also check: trigonometry table
What is the Value of Cos 76° in Terms of Cosec 76°?
Since the cosine function can be represented using the cosecant function, we can write cos 76° as [√(cosec²(76°) - 1)/cosec 76°]. The value of cosec 76° is equal to 1.03061.
How to Find the Value of Cos 76 Degrees?
The value of cos 76 degrees can be calculated by constructing an angle of 76° with the x-axis, and then finding the coordinates of the corresponding point (0.2419, 0.9703) on the unit circle. The value of cos 76° is equal to the x-coordinate (0.2419). ∴ cos 76° = 0.2419.
visual curriculum