Cos 73 Degrees
The value of cos 73 degrees is 0.2923717. . .. Cos 73 degrees in radians is written as cos (73° × π/180°), i.e., cos (1.274090. . .). In this article, we will discuss the methods to find the value of cos 73 degrees with examples.
- Cos 73°: 0.2923717. . .
- Cos (-73 degrees): 0.2923717. . .
- Cos 73° in radians: cos (1.2740903 . . .)
What is the Value of Cos 73 Degrees?
The value of cos 73 degrees in decimal is 0.292371704. . .. Cos 73 degrees can also be expressed using the equivalent of the given angle (73 degrees) in radians (1.27409 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 73 degrees = 73° × (π/180°) rad = 1.2740 . . .
∴ cos 73° = cos(1.2740) = 0.2923717. . .
Explanation:
For cos 73 degrees, the angle 73° lies between 0° and 90° (First Quadrant). Since cosine function is positive in the first quadrant, thus cos 73° value = 0.2923717. . .
Since the cosine function is a periodic function, we can represent cos 73° as, cos 73 degrees = cos(73° + n × 360°), n ∈ Z.
⇒ cos 73° = cos 433° = cos 793°, and so on.
Note: Since, cosine is an even function, the value of cos(-73°) = cos(73°).
Methods to Find Value of Cos 73 Degrees
The cosine function is positive in the 1st quadrant. The value of cos 73° is given as 0.29237. . .. We can find the value of cos 73 degrees by:
- Using Trigonometric Functions
- Using Unit Circle
Cos 73° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 73 degrees as:
- ± √(1-sin²(73°))
- ± 1/√(1 + tan²(73°))
- ± cot 73°/√(1 + cot²(73°))
- ±√(cosec²(73°) - 1)/cosec 73°
- 1/sec 73°
Note: Since 73° lies in the 1st Quadrant, the final value of cos 73° will be positive.
We can use trigonometric identities to represent cos 73° as,
- -cos(180° - 73°) = -cos 107°
- -cos(180° + 73°) = -cos 253°
- sin(90° + 73°) = sin 163°
- sin(90° - 73°) = sin 17°
Cos 73 Degrees Using Unit Circle
To find the value of cos 73 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 73° angle with the positive x-axis.
- The cos of 73 degrees equals the x-coordinate(0.2924) of the point of intersection (0.2924, 0.9563) of unit circle and r.
Hence the value of cos 73° = x = 0.2924 (approx)
☛ Also Check:
Examples Using Cos 73 Degrees
-
Example 1: Find the value of cos 73° if sec 73° is 3.4203.
Solution:
Since, cos 73° = 1/sec 73°
⇒ cos 73° = 1/3.4203 = 0.2924 -
Example 2: Simplify: 8 (cos 73°/sin 163°)
Solution:
We know cos 73° = sin 163°
⇒ 8 cos 73°/sin 163° = 8 (cos 73°/cos 73°)
= 8(1) = 8 -
Example 3: Find the value of 2 cos(73°)/3 sin(17°).
Solution:
Using trigonometric identities, we know, cos(73°) = sin(90° - 73°) = sin 17°.
⇒ cos(73°) = sin(17°)
⇒ Value of 2 cos(73°)/3 sin(17°) = 2/3
FAQs on Cos 73 Degrees
What is Cos 73 Degrees?
Cos 73 degrees is the value of cosine trigonometric function for an angle equal to 73 degrees. The value of cos 73° is 0.2924 (approx)
What is the Value of Cos 73° in Terms of Cosec 73°?
Since the cosine function can be represented using the cosecant function, we can write cos 73° as [√(cosec²(73°) - 1)/cosec 73°]. The value of cosec 73° is equal to 1.04569.
How to Find Cos 73° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 73° can be given in terms of other trigonometric functions as:
- ± √(1-sin²(73°))
- ± 1/√(1 + tan²(73°))
- ± cot 73°/√(1 + cot²(73°))
- ± √(cosec²(73°) - 1)/cosec 73°
- 1/sec 73°
☛ Also check: trigonometric table
What is the Value of Cos 73 Degrees in Terms of Tan 73°?
We know, using trig identities, we can write cos 73° as 1/√(1 + tan²(73°)). Here, the value of tan 73° is equal to 3.270852.
How to Find the Value of Cos 73 Degrees?
The value of cos 73 degrees can be calculated by constructing an angle of 73° with the x-axis, and then finding the coordinates of the corresponding point (0.2924, 0.9563) on the unit circle. The value of cos 73° is equal to the x-coordinate (0.2924). ∴ cos 73° = 0.2924.
visual curriculum