Cos 62 Degrees
The value of cos 62 degrees is 0.4694715. . .. Cos 62 degrees in radians is written as cos (62° × π/180°), i.e., cos (31π/90) or cos (1.082104. . .). In this article, we will discuss the methods to find the value of cos 62 degrees with examples.
- Cos 62°: 0.4694715. . .
- Cos (-62 degrees): 0.4694715. . .
- Cos 62° in radians: cos (31π/90) or cos (1.0821041 . . .)
What is the Value of Cos 62 Degrees?
The value of cos 62 degrees in decimal is 0.469471562. . .. Cos 62 degrees can also be expressed using the equivalent of the given angle (62 degrees) in radians (1.08210 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 62 degrees = 62° × (π/180°) rad = 31π/90 or 1.0821 . . .
∴ cos 62° = cos(1.0821) = 0.4694715. . .
Explanation:
For cos 62 degrees, the angle 62° lies between 0° and 90° (First Quadrant). Since cosine function is positive in the first quadrant, thus cos 62° value = 0.4694715. . .
Since the cosine function is a periodic function, we can represent cos 62° as, cos 62 degrees = cos(62° + n × 360°), n ∈ Z.
⇒ cos 62° = cos 422° = cos 782°, and so on.
Note: Since, cosine is an even function, the value of cos(-62°) = cos(62°).
Methods to Find Value of Cos 62 Degrees
The cosine function is positive in the 1st quadrant. The value of cos 62° is given as 0.46947. . .. We can find the value of cos 62 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Cos 62 Degrees Using Unit Circle
To find the value of cos 62 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 62° angle with the positive x-axis.
- The cos of 62 degrees equals the x-coordinate(0.4695) of the point of intersection (0.4695, 0.8829) of unit circle and r.
Hence the value of cos 62° = x = 0.4695 (approx)
Cos 62° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 62 degrees as:
- ± √(1-sin²(62°))
- ± 1/√(1 + tan²(62°))
- ± cot 62°/√(1 + cot²(62°))
- ±√(cosec²(62°) - 1)/cosec 62°
- 1/sec 62°
Note: Since 62° lies in the 1st Quadrant, the final value of cos 62° will be positive.
We can use trigonometric identities to represent cos 62° as,
- -cos(180° - 62°) = -cos 118°
- -cos(180° + 62°) = -cos 242°
- sin(90° + 62°) = sin 152°
- sin(90° - 62°) = sin 28°
☛ Also Check:
Examples Using Cos 62 Degrees
-
Example 1: Find the value of 2 cos(62°)/3 sin(28°).
Solution:
Using trigonometric identities, we know, cos(62°) = sin(90° - 62°) = sin 28°.
⇒ cos(62°) = sin(28°)
⇒ Value of 2 cos(62°)/3 sin(28°) = 2/3 -
Example 2: Find the value of (cos² 31° - sin² 31°). [Hint: Use cos 62° = 0.4695]
Solution:
Using the cos 2a formula,
(cos² 31° - sin² 31°) = cos(2 × 31°) = cos 62°
∵ cos 62° = 0.4695
⇒ (cos² 31° - sin² 31°) = 0.4695 -
Example 3: Using the value of cos 62°, solve: (1-sin²(62°)).
Solution:
We know, (1-sin²(62°)) = (cos²(62°)) = 0.2204
⇒ (1-sin²(62°)) = 0.2204
FAQs on Cos 62 Degrees
What is Cos 62 Degrees?
Cos 62 degrees is the value of cosine trigonometric function for an angle equal to 62 degrees. The value of cos 62° is 0.4695 (approx)
How to Find the Value of Cos 62 Degrees?
The value of cos 62 degrees can be calculated by constructing an angle of 62° with the x-axis, and then finding the coordinates of the corresponding point (0.4695, 0.8829) on the unit circle. The value of cos 62° is equal to the x-coordinate (0.4695). ∴ cos 62° = 0.4695.
How to Find Cos 62° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 62° can be given in terms of other trigonometric functions as:
- ± √(1-sin²(62°))
- ± 1/√(1 + tan²(62°))
- ± cot 62°/√(1 + cot²(62°))
- ± √(cosec²(62°) - 1)/cosec 62°
- 1/sec 62°
☛ Also check: trigonometry table
What is the Value of Cos 62° in Terms of Sec 62°?
Since the secant function is the reciprocal of the cosine function, we can write cos 62° as 1/sec(62°). The value of sec 62° is equal to 2.130054.
What is the Value of Cos 62 Degrees in Terms of Sin 62°?
Using trigonometric identities, we can write cos 62° in terms of sin 62° as, cos(62°) = √(1 - sin²(62°)). Here, the value of sin 62° is equal to 0.8829.
visual curriculum