Cos 4 Degrees
The value of cos 4 degrees is 0.9975640. . .. Cos 4 degrees in radians is written as cos (4° × π/180°), i.e., cos (π/45) or cos (0.069813. . .). In this article, we will discuss the methods to find the value of cos 4 degrees with examples.
- Cos 4°: 0.9975640. . .
- Cos (-4 degrees): 0.9975640. . .
- Cos 4° in radians: cos (π/45) or cos (0.0698131 . . .)
What is the Value of Cos 4 Degrees?
The value of cos 4 degrees in decimal is 0.997564050. . .. Cos 4 degrees can also be expressed using the equivalent of the given angle (4 degrees) in radians (0.06981 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 4 degrees = 4° × (π/180°) rad = π/45 or 0.0698 . . .
∴ cos 4° = cos(0.0698) = 0.9975640. . .
Explanation:
For cos 4 degrees, the angle 4° lies between 0° and 90° (First Quadrant). Since cosine function is positive in the first quadrant, thus cos 4° value = 0.9975640. . .
Since the cosine function is a periodic function, we can represent cos 4° as, cos 4 degrees = cos(4° + n × 360°), n ∈ Z.
⇒ cos 4° = cos 364° = cos 724°, and so on.
Note: Since, cosine is an even function, the value of cos(-4°) = cos(4°).
Methods to Find Value of Cos 4 Degrees
The cosine function is positive in the 1st quadrant. The value of cos 4° is given as 0.99756. . .. We can find the value of cos 4 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Cos 4 Degrees Using Unit Circle
To find the value of cos 4 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 4° angle with the positive x-axis.
- The cos of 4 degrees equals the x-coordinate(0.9976) of the point of intersection (0.9976, 0.0698) of unit circle and r.
Hence the value of cos 4° = x = 0.9976 (approx)
Cos 4° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 4 degrees as:
- ± √(1-sin²(4°))
- ± 1/√(1 + tan²(4°))
- ± cot 4°/√(1 + cot²(4°))
- ±√(cosec²(4°) - 1)/cosec 4°
- 1/sec 4°
Note: Since 4° lies in the 1st Quadrant, the final value of cos 4° will be positive.
We can use trigonometric identities to represent cos 4° as,
- -cos(180° - 4°) = -cos 176°
- -cos(180° + 4°) = -cos 184°
- sin(90° + 4°) = sin 94°
- sin(90° - 4°) = sin 86°
☛ Also Check:
Examples Using Cos 4 Degrees
-
Example 1: Using the value of cos 4°, solve: (1-sin²(4°)).
Solution:
We know, (1-sin²(4°)) = (cos²(4°)) = 0.9951
⇒ (1-sin²(4°)) = 0.9951 -
Example 2: Find the value of 2 cos(4°)/3 sin(86°).
Solution:
Using trigonometric identities, we know, cos(4°) = sin(90° - 4°) = sin 86°.
⇒ cos(4°) = sin(86°)
⇒ Value of 2 cos(4°)/3 sin(86°) = 2/3 -
Example 3: Find the value of cos 4° if sec 4° is 1.0024.
Solution:
Since, cos 4° = 1/sec 4°
⇒ cos 4° = 1/1.0024 = 0.9976
FAQs on Cos 4 Degrees
What is Cos 4 Degrees?
Cos 4 degrees is the value of cosine trigonometric function for an angle equal to 4 degrees. The value of cos 4° is 0.9976 (approx)
What is the Value of Cos 4 Degrees in Terms of Sin 4°?
Using trigonometric identities, we can write cos 4° in terms of sin 4° as, cos(4°) = √(1 - sin²(4°)). Here, the value of sin 4° is equal to 0.0698.
How to Find Cos 4° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 4° can be given in terms of other trigonometric functions as:
- ± √(1-sin²(4°))
- ± 1/√(1 + tan²(4°))
- ± cot 4°/√(1 + cot²(4°))
- ± √(cosec²(4°) - 1)/cosec 4°
- 1/sec 4°
☛ Also check: trigonometry table
What is the Value of Cos 4° in Terms of Cosec 4°?
Since the cosine function can be represented using the cosecant function, we can write cos 4° as [√(cosec²(4°) - 1)/cosec 4°]. The value of cosec 4° is equal to 14.33558.
How to Find the Value of Cos 4 Degrees?
The value of cos 4 degrees can be calculated by constructing an angle of 4° with the x-axis, and then finding the coordinates of the corresponding point (0.9976, 0.0698) on the unit circle. The value of cos 4° is equal to the x-coordinate (0.9976). ∴ cos 4° = 0.9976.
visual curriculum