Cos 290 Degrees
The value of cos 290 degrees is 0.3420201. . .. Cos 290 degrees in radians is written as cos (290° × π/180°), i.e., cos (29π/18) or cos (5.061454. . .). In this article, we will discuss the methods to find the value of cos 290 degrees with examples.
- Cos 290°: 0.3420201. . .
- Cos (-290 degrees): 0.3420201. . .
- Cos 290° in radians: cos (29π/18) or cos (5.0614548 . . .)
What is the Value of Cos 290 Degrees?
The value of cos 290 degrees in decimal is 0.342020143. . .. Cos 290 degrees can also be expressed using the equivalent of the given angle (290 degrees) in radians (5.06145 . . .)
We know, using degree to radian conversion, θ in radians = θ in degrees × (pi/180°)
⇒ 290 degrees = 290° × (π/180°) rad = 29π/18 or 5.0614 . . .
∴ cos 290° = cos(5.0614) = 0.3420201. . .
Explanation:
For cos 290 degrees, the angle 290° lies between 270° and 360° (Fourth Quadrant). Since cosine function is positive in the fourth quadrant, thus cos 290° value = 0.3420201. . .
Since the cosine function is a periodic function, we can represent cos 290° as, cos 290 degrees = cos(290° + n × 360°), n ∈ Z.
⇒ cos 290° = cos 650° = cos 1010°, and so on.
Note: Since, cosine is an even function, the value of cos(-290°) = cos(290°).
Methods to Find Value of Cos 290 Degrees
The cosine function is positive in the 4th quadrant. The value of cos 290° is given as 0.34202. . .. We can find the value of cos 290 degrees by:
- Using Unit Circle
- Using Trigonometric Functions
Cos 290 Degrees Using Unit Circle
To find the value of cos 290 degrees using the unit circle:
- Rotate ‘r’ anticlockwise to form 290° angle with the positive x-axis.
- The cos of 290 degrees equals the x-coordinate(0.342) of the point of intersection (0.342, -0.9397) of unit circle and r.
Hence the value of cos 290° = x = 0.342 (approx)
Cos 290° in Terms of Trigonometric Functions
Using trigonometry formulas, we can represent the cos 290 degrees as:
- ± √(1-sin²(290°))
- ± 1/√(1 + tan²(290°))
- ± cot 290°/√(1 + cot²(290°))
- ±√(cosec²(290°) - 1)/cosec 290°
- 1/sec 290°
Note: Since 290° lies in the 4th Quadrant, the final value of cos 290° will be positive.
We can use trigonometric identities to represent cos 290° as,
- -cos(180° - 290°) = -cos(-110°)
- -cos(180° + 290°) = -cos 470°
- sin(90° + 290°) = sin 380°
- sin(90° - 290°) = sin(-200°)
☛ Also Check:
Examples Using Cos 290 Degrees
-
Example 1: Find the value of 2 cos(290°)/3 sin(-200°).
Solution:
Using trigonometric identities, we know, cos(290°) = sin(90° - 290°) = sin(-200°).
⇒ cos(290°) = sin(-200°)
⇒ Value of 2 cos(290°)/3 sin(-200°) = 2/3 -
Example 2: Using the value of cos 290°, solve: (1-sin²(290°)).
Solution:
We know, (1-sin²(290°)) = (cos²(290°)) = 0.117
⇒ (1-sin²(290°)) = 0.117 -
Example 3: Find the value of (cos² 145° - sin² 145°). [Hint: Use cos 290° = 0.342]
Solution:
Using the cos 2a formula,
(cos² 145° - sin² 145°) = cos(2 × 145°) = cos 290°
∵ cos 290° = 0.342
⇒ (cos² 145° - sin² 145°) = 0.342
FAQs on Cos 290 Degrees
What is Cos 290 Degrees?
Cos 290 degrees is the value of cosine trigonometric function for an angle equal to 290 degrees. The value of cos 290° is 0.342 (approx)
What is the Value of Cos 290° in Terms of Sec 290°?
Since the secant function is the reciprocal of the cosine function, we can write cos 290° as 1/sec(290°). The value of sec 290° is equal to 2.923804.
How to Find Cos 290° in Terms of Other Trigonometric Functions?
Using trigonometry formula, the value of cos 290° can be given in terms of other trigonometric functions as:
- ± √(1-sin²(290°))
- ± 1/√(1 + tan²(290°))
- ± cot 290°/√(1 + cot²(290°))
- ± √(cosec²(290°) - 1)/cosec 290°
- 1/sec 290°
☛ Also check: trigonometry table
How to Find the Value of Cos 290 Degrees?
The value of cos 290 degrees can be calculated by constructing an angle of 290° with the x-axis, and then finding the coordinates of the corresponding point (0.342, -0.9397) on the unit circle. The value of cos 290° is equal to the x-coordinate (0.342). ∴ cos 290° = 0.342.
What is the Value of Cos 290 Degrees in Terms of Sin 290°?
Using trigonometric identities, we can write cos 290° in terms of sin 290° as, cos(290°) = √(1 - sin²(290°)). Here, the value of sin 290° is equal to -0.9397.
visual curriculum