Write the given expression in terms of x and y only. cos(sin-1(x) - tan-1(y)).
Solution:
Given cos(sin-1(x) - tan-1(y)) --------(1)
Put sin-1(x) = ⍺ and tan-1(y) = β
cos ⍺ = √(1 - x2) and sin ⍺ = x
cos β = 1/ √(1 + y2) and sin β = y/ √(1 + y2)
Substituting the terms in equation (1), cos(sin-1(x) - tan-1(y))
cos (⍺ - β) = cos ⍺ . cos β + sin ⍺ . sin β
cos (⍺ - β) = √(1 - x2) . [1/ √(1 + y2)] + x . [y/ √(1 + y2)]
cos (⍺ - β) = [√(1 - x2) + xy] / [√(1 + y2)]
Write the given expression in terms of x and y only. cos(sin-1(x) - tan-1(y)).
Summary:
Thee given expression in terms of x and y only for cos(sin-1(x) - tan-1(y)) is [√(1 - x2) + xy] / [√(1 + y2)]
Math worksheets and
visual curriculum
visual curriculum