Write the equation in spherical coordinates. x2 + y2 + z2 = 49.
Solution:
Given, the cartesian equation is x2 + y2 + z2 = 49.
We have to write the equation in spherical coordinates.
By using the relation to convert cartesian to spherical coordinates,
r = ρsin๐
x = rcos θ = ρsin๐cos θ
z = ρcos๐
y = rsinθ = ρsin๐sin θ
ρ = √x2 + y2 + z2 = √r2 + z2
Now, x2 + y2 + z2 = r2 + z2
According to the question,
(ρsin๐cos θ)2 + (ρsin๐sinθ) + (ρcos๐)2 = 49
ρ2sin2๐cos2θ + ρ2sin2๐sin2θ + ρ2cos2๐ = 49
Taking out common term,
ρ2sin2๐(cos2θ + sin2θ) + ρ2cos2๐ = 49
We know, cos2θ + sin2θ = 1
ρ2sin2๐(1) + ρ2cos2๐ = 49
Taking out common term,
ρ2[sin2๐ + cos2๐] = 49
Also, sin2๐ + cos2๐ = 1,
ρ2[1] = 49
ρ2 = 49
ρ = ±7
X2 - Y2 - Z2 - 1 = 0
r = ρsin๐ x = rcos θ = ρsin๐cos θ
z = ρcos๐ y = rsin θ = ρsin๐sin θ
X2 - Y2 - Z2 = 1
(ρsin๐cos θ)2 - (ρsin๐sin θ)2 - (ρcos๐)2 =1
ρ2sin2๐cos2θ - ρ2sin2๐sin2θ - ρ2cos2๐ = 1
ρ2sin2๐(cos2θ - sin2θ) - ρ2cos2๐ = 1
ρ2sin2๐(cos2θ - (1 - cos2θ)) - ρ2cos2๐ = 1
ρ2sin2๐(2cos2θ -1) - ρ2cos2๐ =1
2ρ2sin2๐cos2θ - ρ2sin2๐ - ρ2cos2๐ = 1
2ρ2sin2๐cos2θ - ρ2[sin2๐ + cos2๐] = 1
Since sin2๐ + cos2๐ = 1
2ρ2sin2๐cos2θ - ρ2[1] = 1
ρ2(2sin2๐cos2θ - 1) = 1
ρ2 = 1/(2sin2๐cos2θ - 1)
ρ = 1/√(2sin2๐cos2θ - 1)
Therefore, the equation in spherical coordinates is ρ = 1/√(2sin2๐cos2θ - 1).
Write the equation in spherical coordinates. x2 + y2 + z2 = 49.
Summary:
The equation in spherical coordinates x2 + y2 + z2 = 49 is ρ = 1/√(2sin2๐cos2θ - 1).
visual curriculum