Write a linear factorization of the function. f(x) = x4 + 36x2
Solution:
Given function f(x) = x4 + 36x2
= (x2)2 + (6x)2
We know that a2 + b2 = (a + b)2 - 2ab
Therefore,
= (x2)2 + (6x)2
= (x2 + 6x)2 - 2(x2)(6x)
= x2(x - 6)2 - 12x3
= x2[(x - 6)2 - 12x]
= x2[(x - 6)2 - (√12x)2 ]
We know that a2 - b2 = (a + b)(a - b)
(x - 6)2 - (√12x)2 = (x - 6 + √12x)(x - 6 - √12x), therefore
x2[(x - 6)2 - (√12x)2 ]
= x2(x - 6 + √12x)(x - 6 - √12x)
Alternatively
f(x) = x4 + 36x2
= x2(x2 +36)
= x2(x + 6i)(x - 6i)
The linear factors are x, (x - 6i) and (x + 6i)
Write a linear factorization of the function. f(x) = x4 + 36x2
Summary:
Linear factorization of the function. f(x) = x4 + 36x2 leads to x2(x + 6i)(x - 6i)
Math worksheets and
visual curriculum
visual curriculum