Which are the roots of the quadratic function f(b) = b2 - 75? check all that apply.
b = 5 square root of 3
b = -5 square root of 3
b = 3 square root of 5
b= -3 square root of 5
b = 25 square root of 3
b = -25 square root of 3
Solution:
The given quadratic equation is f(b) = b2 - 75
If the value of f(b) is 0, then b is the root of the quadratic equation.
When b = 5√3
f(5√3) = (5√3)2 - 75
f(5√3) = 75 - 75 = 0
When b = -5√3
f(-5√3) = (-5√3)2 - 75
f(-5√3) = 75 - 75 = 0
When b = 3√5
f(3√5) = (3√5)2 - 75
f(3√5) = 45 - 75 = -30 ≠ 0
When b = -3√5
f(-3√5) = (-3√5)2 - 75
f(-3√5) = 45 - 75 = -30 ≠ 0
When b = 25√3
f(25√3) = (25√3)2 - 75
f(25√3) = 1875 - 75 = 1800 ≠ 0
When b = -25√3
f(-25√3) = (-25√3)2 - 75
f(-25√3) = 1875 - 75 = 1800 ≠ 0
Here only 5√3 and -5√3 gives f(b) = 0
Therefore, b = 5√3 and b = -5√3 are the roots of the quadratic equation.
Which are the roots of the quadratic function f(b) = b2 - 75? check all that apply.
Summary:
The roots of the quadratic function f(b) = b2 - 75 are b = 5√3 and b = -5√3.
Math worksheets and
visual curriculum
visual curriculum