What is the value of the integral eax cos (bx)?
Solution:
Integration is exactly the reverse of differentiation. We will use integration by parts to solve this function.
Here's the detailed solution.
⇒ I = ∫ eax cos (bx) dx
Let, u = eax and v = cos(bx)
∫ uv dx = u ∫ v dx − ∫ u' (∫ v dx) dx
⇒ I = 1/b eax.sin bx - a/b ∫ eax.sin bx dx
Again applying part integration to ∫ eax sin bx dx, we get
I = 1/b eax.sin bx + a/b2 eax.cos(bx) - a2/b2 ∫ eax.cos (bx) dx
⇒ I = 1/b eax.sin bx + a/b2 eax.cos(bx) - (a2/b2) I
On Solving LHS and RHS, we get
I (1 + a2/b2) = 1/b eax.sin bx + a/b2 eax.cos(bx)
On solving this we get,
I = eax / (a2 + b2) {b sin bx + a cos bx} + c
Thus, the value of the integral eax cos(bx) is eax / (a2 + b2) {a cos bx + b sin bx} + c
What is the value of the integral eax cos (bx)?
Summary:
The value of the integral eax cos (bx) is eax / (a2 + b2) {a cos bx + b sin bx} + c
Math worksheets and
visual curriculum
visual curriculum