What is the proof of the theorem: [x] + [x + 1/n] + [x + 2/n] + ... + [x + (n - 2)/n] + [x + (n - 2)/n][x + (n - 1)/n] = [nx]
Solution:
[.] represents the Greatest Integer Function.
The greatest integer function implies [a + (p/q)] = a (a be any integer and (p/q) < 1)
L.H.S. = [x] + [x + 1/n] + [x + 2/n] + … + [x + (n - 2)/n] + [x + (n - 2)/n] + [x + (n - 1)/n]
After simplifying it by the greatest integer property that,
[a + (p/q)] = a (a be any integer and (p/q) < 1)
L.H.S. = [x] + [x] + [x] + ...+ till n times
So, L.H.S. = n[x] = [nx] = R.H.S.
Therefore, [x] + [x + 1/n] + [x + 2/n] + ……. + [x + (n - 2)/n] + [x + (n - 2)/n][x + (n - 1)/n] = [nx]
What is the proof of the theorem: [x] + [x + 1/n] + [x + 2/n] + ... + [x + (n - 2)/n] + [x + (n - 2)/n][x + (n - 1)/n] = [nx]
Summary:
Hence, proved [x] + [x + 1/n] + [x + 2/n] + ... + [x + (n - 2)/n] + [x + (n - 2)/n][x + (n - 1)/n] = [nx]
Math worksheets and
visual curriculum
visual curriculum