What is the difference of the polynomials? (5x3 + 4x2) - (6x2 - 2x - 9) - (x3 + 6x2 + 9) - (x3 + 2x2) - (5x3 - 2x2 - 2x - 9) - (5x3 - 2x2 + 2x + 9)
Solution:
Given, the polynomials are (5x3 + 4x2), (6x2 - 2x - 9), (x3 + 6x2 + 9), (x3 + 2x2), (5x3 - 2x2 - 2x - 9), (5x3 - 2x2 + 2x + 9).
We have to find the difference between the polynomials.
Step 1:
(5x3 + 4x2) - (6x2 - 2x - 9)
= 5x3 + 4x2 - 6x2 + 2x + 9
= 5x3 - 2x2 + 2x + 9
Step 2:
(5x3 - 2x2 + 2x + 9) - (x3 + 6x2 + 9)
= 5x3 - 2x2 + 2x + 9 - x3 - 6x2 - 9
= 5x3 - x3 - 2x2 - 6x2 + 2x + 9 - 9
= 4x3 - 8x2 + 2x
Step 3:
(4x3 - 8x2 + 2x) - (x3 + 2x2)
= 4x3 - 8x2 + 2x - x3 - 2x2
= 4x3 - x3 - 8x2 - 2x2 + 2x
= 3x3 - 10x2 + 2x
Step 4:
(3x3 - 10x2 + 2x) - (5x3 - 2x2 - 2x - 9)
= 3x3 - 10x2 + 2x - 5x3 + 2x2 + 2x + 9
= 3x3 - 5x3 - 10x2 + 2x2 + 2x + 2x + 9
= -2x3 - 8x2 + 4x + 9
Step 5:
(-2x3 - 8x2 + 4x + 9) - (5x3 - 2x2 + 2x + 9)
= -2x3 - 8x2 + 4x + 9 - 5x3 + 2x2 - 2x - 9
= -2x3 - 5x3 - 8x2 + 2x2 + 4x - 2x + 9 - 9
= -7x3 - 6x2 + 2x
Therefore, the difference between the given polynomials is -7x3 - 6x2 + 2x.
What is the difference of the polynomials? (5x3 + 4x2) - (6x2 - 2x - 9) - (x3 + 6x2 + 9) - (x3 + 2x2) - (5x3 - 2x2 - 2x - 9) - (5x3 - 2x2 + 2x + 9)
Summary:
The difference between the polynomials (5x3 + 4x2) - (6x2 - 2x - 9) - (x3 + 6x2 + 9) - (x3 + 2x2) - (5x3 - 2x2 - 2x - 9) - (5x3 - 2x2 + 2x + 9) is -7x3 - 6x2 + 2x.
visual curriculum