What are the zeros of the quadratic function f(x) = 2x2 + 8x - 3?
Solution:
Given, f(x) = 2x2 + 8x - 3
We have to find zero of the quadratic function.
By using quadratic formula,
\(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Here, a = 2, b = 8, c = -3
\(x=\frac{-8\pm \sqrt{(8)^{2}-4(2)(-3)}}{2(2)}\)
\(x=\frac{-8\pm \sqrt{64+24}}{4}\)
\(x=\frac{-8\pm \sqrt{88}}{4}\)
\(x=\frac{-8\pm9.38}{4}\)
Now,\(x=\frac{-8+9.38}{4}=\frac{1.38}{4}=0.345\)
\(x=\frac{-8-9.38}{4}=\frac{-17.38}{4}=-4.345\)
Therefore, the zeros of the function are -4.345 and 0.345.
What are the zeros of the quadratic function f(x) = 2x2 + 8x - 3?
Summary:
x = -4.345 and x = 0.345 are zeros of the quadratic function f(x) = 2x2 + 8x - 3.
Math worksheets and
visual curriculum
visual curriculum