Verify the identity. sin(x + y) - sin(x - y) = 2 cosx siny
Solution:
Given sin(x + y) - sin(x - y)
Here, we are using the following trignometric identitites:
sin(A + B) = sinAcosB + sinBcosA
sin(A - B) = sinAcosB - sinBcosA
Hence,sin(x + y) - sin(x - y) = sinxcosy + sinycosx - (sinxcosy - sinycosx)
sin(x + y) - sin(x - y) = sinxcosy + sinycosx - sinxcosy + sinycosx
sin(x + y) - sin(x - y) = sinxcosy + sinycosx - sinxcosy + sinycosx
sin(x + y) - sin(x - y) = sinycosx + sinycosx
sin(x + y) - sin(x - y) = 2sinycosx
Hence verified.
Verify the identity. sin (x + y) - sin (x - y) = 2 cos x sin y
Summary:
The equation sin (x + y) - sin (x - y) = 2 cos x sin y is verified.
Math worksheets and
visual curriculum
visual curriculum