Verify the identity: cos 4x + cos 2x = 2 - 2sin2(2x) - 2sin2(x)
Solution:
We have to verify the given identity.
LHS: cos(4x) + cos(2x)
By using trigonometric identity,
cos(A + B) = cosAcosB - sinAsinB
cos(4x) = cos(2x + 2x)
cos(2x + 2x) = cos(2x)cos(2x) - sin(2x)sin(2x)
= cos2(2x) - sin2(2x)
By using trigonometric identity,
cos2x + sin2x = 1
cos2x = 1 - sin2x
So, cos2(2x) - sin2(2x) = 1 - sin2(2x) - sin2(2x)
cos(4x) = 1 - 2sin2(2x)
By using trigonometric identity,
cos(2A) = 1 - 2sin2A
So, cos(2x) = 1 - 2sin2x
Now, cos(4x) + cos(2x) = 1 - 2sin2(2x) + 1 - 2sin2(x)
= 2 - 2sin2(2x) - 2sin2(x)
= RHS
LHS = RHS
Alternative solution:
It is given that
cos 4x + cos 2x = 2 - 2 sin2 2x - 2 sin2 x
Consider the LHS
We know that cos 2x = 1 - 2 sin2 x [using the cos 2x formula]
LHS = cos 4x + cos 2x
Here cos 4x = 1 - 2 sin2 2x
cos 2x = 1 - 2 sin2 x
LHS = 1 - 2sin2 2x + 1 - 2 sin2 x
LHS = 2 - 2sin2 2x - 2 sin2 x
=RHS
Therefore, the identity is verified.
Verify the identity: cos 4x + cos 2x = 2 - 2sin2(2x) - 2sin2(x)
Summary:
The identity cos 4x + cos 2x = 2 - 2sin2(2x) - 2sin2(x) is verified.
visual curriculum