Verify that sin(A + B) + sin(A - B) = 2sinA.sinB
To verify this, we will use the trigonometric identity
Answer: Hence, verified that sin(A + B) + sin(A - B) = 2sinA.sinB
Let's see the solution.
Explanation:
Let (A + B) = θ and (A - B) = ϕ
LHS = sin (A + B) + sin (A - B) = sin (θ) + sin (ϕ)
On multiplying and dividing the equation by 2, we get
⇒ 2 (sin (θ) / 2 + sin (ϕ) / 2)
By adding and subtracting θ and ϕ, we get
⇒ θ + ϕ = (A + B) + (A - B) = 2A
⇒ θ - ϕ = (A + B) - (A - B) = 2B
sin X + sin Y = 2 [sin (X + Y) / 2 + sin (X - Y) / 2]
So, sin (A + B) + sin (A - B) = 2 [sin (2A) / 2 + sin (2B) / 2]
Thus, sin (A + B) + sin(A - B) = 2[sin A + sin B]
Math worksheets and
visual curriculum
visual curriculum