Using the quadratic formula to solve 11x2-4x=1. Find the value of x?
Solution:
11x2 - 4x = 1 [Given]
11x2 - 4x - 1 = 0
The standard formula to evaluate the quadratic equation ax2 + bx + c = 0 is
\( x = \frac{-b\pm \sqrt{b^{2}-4ac}}{2a} \)
By comparing the given equation to the standard form
a = 11
b = - 4
c = - 1
Substituting it in the equation
\( \\x = \frac{-(-4)\pm \sqrt{(-4)^{2}-4\times 11\times -1}}{2\times 11} \\ \\x=\frac{4\pm \sqrt{16+44}}{22} \\ \\x=\frac{4\pm \sqrt{60}}{22} \\ \\x=\frac{4\pm \sqrt{15\times 4}}{22} \)
\( \\x=\frac{4\pm 2\sqrt{15}}{22} \\ \\Taking \: out \: 2 \: as \: common \\ \\x=\frac{2\pm \sqrt{15}}{11} \\ \\x=\frac{2}{11}\pm \frac{\sqrt{15}}{11} \)
Therefore, the value of x is 2/11 ± √15/11.
Using the quadratic formula to solve 11x2-4x=1. Find the value of x?
Summary:
Using the quadratic formula to solve 11x2-4x=1. The value of x is 2/11 ± √15/11.
Math worksheets and
visual curriculum
visual curriculum