Use the laplace transform to solve the given initial-value problem. y' + 5y = e4t, y(0) = 2
Solution:
Given, y' + 5y = e4t
Laplace transform can be given by
\(F(s)=\int_{0}^{\infty }f(t).e^{-st}.dt\)
Taking Laplace transform on both sides,
L(y’) + 5L(y) = L(e4t)
sY(s) - y(0) + 5Y(s) = 1 / (s - 4)
sY(s) - 2 + 5Y(s) = 1 / (s - 4)
Taking out common term,
Y(s)(s + 5) - 2 = 1 / (s - 4)
Y(s)(s + 5) = [1 / (s - 4)] + 2
Y(s) = [1 / (s - 4)(s + 5)] + (2 / (s + 5))
Y(s) = [1 + 2(s - 4)] / [(s + 5)(s - 4)]
Y(s) = [1 + 2s- 8] / [(s + 5)(s - 4)]
Y(s) = (2s - 7) / [(s + 5)(s - 4)]
Resolving into partial fraction we get,
(2s - 7)/[(s + 5)(s - 4)] = (A / (s + 5)) + (B / (s - 4)) ------------------ (1)
(2s - 7) = A(s - 4) + B(s + 5)
Now, (s - 4) = 0
s = 4
(2(4) - 7) = A(0) + B(4 + 5)
8 - 7 = 9B
B = 1 / 9
Now, s + 5 = 0
s = -5
(2(-5) - 7) = A(-5 - 4) + B(0)
-10 - 7 = A(-9)
9A = 17
A = 17 / 9
Substitute the values of A and B in (1)
Y(s) = [(17 / 9) / (s + 5)] + [(1 / 9) / (s - 4)]
Y(s) = [17 / 9(s + 5)] + [1 / 9(s - 4)]
Taking inverse Laplace Transform,
y(t) = [17(e-4t) / 9] + [e4t / 9]
Therefore, y(t) = [17(e-4t) / 9] + [e4t / 9].
Use the laplace transform to solve the given initial-value problem. y' + 5y = e4t, y(0) = 2
Summary:
Using laplace transform to solve the given initial-value problem y' + 5y = e4t, y(0) = 2. The value of y(t) = [17(e-4t) / 9] + [e4t / 9].
visual curriculum