

Use the laplace transform to solve the given initial-value problem. y' + 3y = e5t, y(0) = 2
Solution:
Given, y' + 3y = e5t
Laplace transform can be given by
F(s)=∫∞0f(t).e−st.dt
Taking Laplace transform on both sides,
L(y’) + 3L(y) = L(e5t)
sY(s) - y(0) + 3Y(s) = 1 / (s - 5)
sY(s) - 2 + 3Y(s) = 1 / (s - 5)
Taking out common term,
Y(s)(s + 3) - 2 = 1 / (s - 5)
Y(s)(s + 3) = [1 / (s - 5)] + 2
Y(s) = [1 / (s - 5)(s + 3)] + (2/(s + 3))
Y(s) = [1 + 2(s - 5)] / [(s + 3)(s - 5)]
Y(s) = [1 +2s - 10] / [(s + 3)(s - 5)]
Y(s) = (2s - 9) / [(s + 3)(s - 5)]
Resolving into partial fraction we get,
(2s - 9) / [(s + 3)(s - 5)] = (A / (s + 3)) + (B / (s - 5)) ------------------ (1)
(2s - 9) = A(s - 5) + B(s + 3)
Now, (s - 5) = 0
s = 5
(2(5) - 9) = A(0) + B(5 + 3)
10 - 9 = 8B
B = 1/8
Now, s + 3 = 0
s = -3
(2(-3) - 9) = A(-3 - 5) + B(0)
-6 - 9 = A(-8)
8A = 15
A = 15 / 8
Substitute the values of A and B in (1)
Y(s) = [(15 / 8) / (s + 3)] + [(1 / 8) / (s - 5)]
Y(s) = [15 / 8(s + 3)] + [1 / 8(s - 5)]
Taking inverse Laplace Transform,
y(t) = [15(e-3t) / 8] + [e5t / 8]
Therefore, y(t) = [15(e-3t) / 8] + [e5t / 8]
Use the laplace transform to solve the given initial-value problem. y' + 3y = e5t, y(0) = 2
Summary:
Using laplace transform to solve the given initial-value problem y' + 3y = e5t, y(0) = 2. The value of y(t) = [15(e-3t) / 8] + [e5t / 8]
visual curriculum