Solve the given initial-value problem. y'' + y' + 2y = 0, y(0) = y'(0) = 0
Solution:
Given, the differential equation is y’’ + y’ + 2y = 0
We have to find the solution of the equation.
The differential equation can be rewritten as (D2 + D + 2)y = 0
Where, D = d/dx
Auxiliary equation is m2 + m + 2 = 0
Using quadratic formula,
\(x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\)
Here, a = 1, b = 1, c = 2
\(x=\frac{-1\pm \sqrt{(1)^{2}-4(1)(2))}}{2(1)}\)
\(x=\frac{-1\pm \sqrt{1-8}}{2}\)
\(x=\frac{-1\pm \sqrt{-7}}{2}\)
Now, \(x=\frac{-1 -\sqrt{7}i}{2}\)
\(x=\frac{-1 +\sqrt{7}i}{2}\)
x = \(x=\frac{1}{2}[-1\pm \sqrt{7}i]\)
So, the general solution is of the form,
\(y(x) = C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}\)
Here, m1 = \(x=\frac{1}{2}[-1+ \sqrt{7}i]\)
and m2 = \(x=\frac{1}{2}[-1- \sqrt{7}i]\)
\(y(x) = C_{1}e^{(\frac{1}{2}[-1+ \sqrt{7}i])x}+C_{2}e^{(\frac{1}{2}[-1- \sqrt{7}i])x}\)
\(y(x) =C_{1}e^{x[-\frac{1}{2}-\frac{\sqrt{7}i}{2}]}+C_{2}e^{x[-\frac{1}{2}+\frac{\sqrt{7}i}{2}]}\)
\(y(x) = C_{1}[e^{-\frac{1}{2}x}e^{-\frac{\sqrt{7}i}{2}x}]+C_{2}[e^{-\frac{1}{2}x}e^{\frac{\sqrt{7}i}{2}x}]\)
\(y(x) = e^{\frac{-x}{2}}[C_{1}e^{\frac{-\sqrt{7}i}{2}x}+C_{2}e^{\frac{\sqrt{7}i}{2}x}]\)
\(y(x) = e^{\frac{-x}{2}}[C_{1}sin(\frac{\sqrt{7}x}{2})+C_{2}cos(\frac{\sqrt{7}x}{2})]\)
Given, y(0) = 0
So, \(y(0)=e^{\frac{-(0)}{2}}[C_{1}sin(\frac{\sqrt{7}(0)}{2})+C_{2}cos(\frac{\sqrt{7}(0)}{2})]=0\)
We know, e0 = 1
\((1)[0+C_{2}(1)]=0\)
\(C_{2}=0\)
y’(x)=\(-\frac{(C_{1}sin(\frac{\sqrt{7}x}{2})+C_{2}cos(\frac{\sqrt{7}x}{2}))e\frac{-x}{2}}{2}+(\frac{\sqrt{7}C_{1}cos(\frac{\sqrt{7}x}{2})}{2}-\frac{\sqrt{7}C_{2}sin(\frac{\sqrt{7}x}{2})}{2})e^{\frac{-x}{2}}\)
Given, y’(0) = 0
0=\(-\frac{(C_{1}sin(\frac{\sqrt{7}(0)}{2})+C_{2}cos(\frac{\sqrt{7}(0)}{2}))e\frac{-(0)}{2}}{2}+(\frac{\sqrt{7}C_{1}cos(\frac{\sqrt{7}(0)}{2})}{2}-\frac{\sqrt{7}C_{2}sin(\frac{\sqrt{7}(0)}{2})}{2})e^{\frac{-(0)}{2}}\)
0=\(-\frac{(C_{1}(0)+C_{2}(1))(1)}{2}+(\frac{\sqrt{7}C_{1}(1)}{2}-\frac{\sqrt{7}C_{2}(0)}{2})(1)\)
\(-\frac{C_{2}}{2}+(\frac{\sqrt{7}C_{1}}{2}-0)\) = 0
\(\frac{\sqrt{7}C_{1}}{2}=\frac{C_{2}}{2}\)
\(\frac{\sqrt{7}C_{1}}{2}=0\)
\(C_{1}=0\)
Therefore, the solution is y(x) = 0.
Solve the given initial-value problem. y'' + y' + 2y = 0, y(0) = y'(0) = 0
Summary:
The solution to the given initial value problem y'' + y' + 2y = 0, y(0) = y'(0) = 0 is y(x) = 0.
visual curriculum