Solve the differential equation by variation of parameters. y'' - 9y = 9x/e3x
Solution:
Given, the differential equation is y'' - 9y = 9x/e3x.
We have to solve the differential equation by variation of parameters.
The standard form of equation is given by y'' + py’ + qy = X,
Where p, q and X are functions of x.
The complementary function of the equation is given by Yc = C₁Y₁ + C₂Y₂
The complementary function of the given equation is y'' + y = 0
Let y'' = m
Now, m² - 9 = 0
m² = 9
Taking square root,
m = ±3
So, Yc = C₁.e3x + C₂.e-3x.
The particular integral is given by Yp = U₁Y₁ + U₂Y₂
Where, U₁ = ∫W₁/W dx
U₂ = ∫W₂/W dx
W = \(\begin{vmatrix}Y_{1} &Y_{2} \\dY_{1} &dY_{2} \\\end{vmatrix}\)
Here, f(x) = 9x/e3x = 9xe-3x, Y₁ = e3x and Y₂ = e-3x
So, dY₁ = 3e3x
dY₂’ = -3e-3x
W = \(\begin{vmatrix}e^{3x} & e^{-3x} \\3e^{3x} & -3e^{-3x} \\\end{vmatrix}\)
= e3x(-3e-3x) - e–3x(3e3x)
We know, e3x ×e-3x = 1
= -3 - 3
W = -6
W₁ = \(\begin{vmatrix}0 &Y_{2} \\f(x) &dY_{2} \\\end{vmatrix}\)
W₁ =\(\begin{vmatrix}0 & 9xe^{-3x} \\ e^{-3x} & -3e^{-3x} \\\end{vmatrix}\)
= 0(-3e-3x) - 9xe-3x(e-3x)
= 0 - 9xe-6x
W₁ = -9xe-6x
W₂ = \(\begin{vmatrix}Y_{1} &0 \\dY_{1} &f(x) \\\end{vmatrix}\)
= \(\begin{vmatrix}e^{3x} & 3e^{3x} \\ 0 & 9xe^{-3x} \\\end{vmatrix}\)
= e3x(9xe-3x) - 0(3e3x)
= 9x - 0
W₂ = 9x
\(U_{1} = \int\frac{-9xe^{-6x}}{-6}dx \\ = \frac{9}{6}\int xe^{-6x} dx \\=\frac{3}{2}\int xe^{-6x} dx\)
Let u = x, du = dx
v = (-1/6)e-6x, dv = e-6x
\(U_{1}=\frac{3}{2}[\frac{-1}{6}xe^{-6x}-\int\frac{1}{6}e^{-6x}]dx \\=\frac{3}{2}[\frac{-1}{6}xe^{-6x}+\frac{1}{36}e^{-6x}]\\=\frac{-3}{12}xe^{6x}+\frac{3}{72}e^{-6x}\)
U₁ = (-1/4)xe-6x + (1/36)e-6x
\(U_{2}=\int \frac{9}{-6}x dx\\=\frac{9}{-6}\int x dx\\=\frac{3}{-2}\int x dx\)
\(U_{2}=\frac{3}{-2}(\frac{x^{2}}{2})\)
U₂ = -3x²/4
Now, Yp = ((-1/4)xe-6x + (1/36)e-6x)(e3x) + (-3x²/4)(e-3x)
Yp = (-1/4)xe-3x + (1/24)e-3x - (3/4)x²e-3x
We know, the complete solution is Y = Yc + Yp
Y = C₁ e3x + C₂ e-3x + (-1/4)xe-3x + (1/24)e-3x - (3/4)x²e-3x
Y = C₁ e3x + C₂ e-3x - (1/4)xe-3x + (1/24)e-3x - (3/4)x²e-3x
Therefore, the required solution is Y = C₁ e3x + C₂ e-3x - (1/4)xe-3x + (1/24)e-3x - (3/4)x²e-3x.
Solve the differential equation by variation of parameters. y'' - 9y = 9x/e3x
Summary:
The solution of the differential equation y'' - 9y = 9x/e3x by variation of parameters is Y = C₁ e3x + C₂ e-3x - (1/4)xe-3x + (1/24)e-3x - (3/4)x²e-3x.
visual curriculum