Solve for the general value of θ: tan (θ) tan (120º - θ) tan (120º + θ) = 1/√3.
For angles greater than 90 degrees we define the tangent of θ by tan θ.
Answer: The value of (θ) in tan (θ) tan (120º - θ) tan (120º + θ) is nπ/3 + π /18, n∈Z
To find the value of θ we will use use trigonometric identities.
Explanation:
tan θ × tan (120º - θ) × tan(120º + θ) = 1/√3
⇒ tan θ × tan (180º - 60º - θ) × tan (180º - 60º + θ) = 1/√3
⇒ tan θ × tan [180º + (-θ - 60º)] × tan [180º + (θ - 60º)] = 1/√3
Since tan (180º + Ø) = tan Ø, we have, tan θ× tan (-θ - 60º) × tan (θ - 60º) = 1/√3
⇒ - tan θ × tan (θ + 60º) × tan (θ - 60º) = 1/√3
We know that,
- tan (A + B) = (tan A + tan B)/1 - tan A tan B
- tan (A - B) = (tan A - tan B)/1 + tan A tan B
Also, tan 60º = √3
Applying these in our equation - tan θ × tan (θ + 60º) × tan (θ - 60º) = 1/√3, we get
-tan θ × [(tan θ + tan 60º)/(1 - tan θ × tan 60º)] × [(tan θ - tan 60º)/(1 + tan θ × tan 60º)] = 1/√3
⇒ -tan θ × [(tan θ + √3)/(1 - tan θ × √3)] × [(tan θ - √3)/(1 + tan θ × √3)] = 1/√3
⇒ -tan θ [(tan2 θ - 3)/(1 - 3 tan2 θ)] = 1/√3 [Using (a-b)(a+b) = a2 - b2]
⇒ (3 tan θ - tan3 θ) / (1 - 3 tan2 θ) = 1/√3
Applying tan 3θ = 3 tan θ - tan3 θ / 1 - 3 tan2 θ above,
tan 3θ = 1/√3
⇒ 3θ = tan-1 (1/√3)
⇒ 3θ = nπ + π /6, n ∈ Z
⇒ θ = nπ/3 + π /18, n ∈ Z
Thus, the general value of θ: tan (θ) tan (120º - θ) tan (120º + θ) = 1/√3 is nπ/3 + π /18, n ∈ Z
visual curriculum