Show that: sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1.
Solution:
To prove sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1, we will use trigonometric identities of trigonometry.
LHS = sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1)
= sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1sin A / [ (1/ cos A) + (sin A / cos A) - 1] + cos A / [ (1/ sin A) + (cos A / sin A) - 1]
On solving this by taking LCM, we get
= sin A / [( 1 + sin A - cos A ) / cos A ] + [ cos A / ( 1 + cos A - sin A ) / sin A ]
= sin A × cos A [ ( 1 / 1 + sin A - cos A ) + ( 1 / 1 + cos A - sin A ) ]
By taking LCM and solving this, we get
⇒ sin A × cos A [ ( 2 ) / 1 + (sin A - cos A ) ( 1 - ( sin A + cos A ) ]
Using ( a - b ) ( a + b ) = a2 - b2 we will solve this.
⇒ sin A × cos A / [ 1 + (sin A - cos A ) ( 1 - ( sin A + cos A )
⇒ 2 sin A × cos A / (1 - sin2 A + cos2 A - 2 sin A × cos A)
By using sin2 A + cos2 A = 1, we get
⇒ 2 sin A × cos A / 2 sin A × cos A
= 1
= RHS
Hence Proved that sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1
Thus, sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) is equal to 1.
Show that: sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1.
Summary:
sin A / (sec A + tan A - 1) + cos A / (cosec A + cot A - 1) = 1 can be proved using identities.
visual curriculum