Show that (cosec A - sin A) (sec A - cos A) = 1 / (tan A + cot A).
To prove this equation true we will use trigonometric identities. We will start from LHS.
Answer: Hence Proved (cosec A - sin A) (sec A - cos A) = 1 / tan A + cot A.
Let's see the detailed solution.
Explanation:
LHS = (cosec A - sin A) (sec A - cos A)
cosec A can be written as 1/sin A and sec A can be written as 1 / cos A
(1 / sin A - sin A) (1 / cos A - cos A)
On solving this expression using 1 - sin2A = cos2A and sin2A = 1 - cos2A, we get
[(1 - sin2A) / sin A] [(1 - cos2A) / cos A]
(cos2A / sin A) (sin2A / cos A)
sin A × cos A / 1
By using sin2A + cos2A = 1
sin A × cos A / (sin2A + cos2A)
On dividing both numerator and denominator by cos A sin A, we get,
1 / (sin2A + cos2A) sin A × cos A
On solving this, we get
1 / (sin2A/ sin A × cos A) + (cos2A / sin A × cos A)
1 / (sin A / cos A) + (cos A / sin A)
1/ tan A + cot A = RHS
Hence Proved that LHS = RHS
Thus, (cosec A - sin A) (sec A - cos A) = 1 / tan A + cot A.
visual curriculum