Select all of the following that are potential roots of p(x) = x4 - 9x2 - 4x + 12?
0, ±2, ±4, ±9, ±1/2, ±3, ±6, ±12
Solution:
For any polynomial f(x), k is the root only if f(k) = 0
To find which of the given values is a root, let us apply the remainder theorem. To find the remainder in each case. If the remainder is 0, then it is a root.
p(x) = x4 - 9x2 - 4x + 12
We have to evaluate p(x) for these values and see if the answer is zero
p (0) = (0)4 - 9 (0)2 - 4 (0) + 12 = 12 is not a root of this polynomial.
p (-2) = (-2)4 - 9 (-2)2 - 4 (-2) + 12 = 16 - 36 + 8 + 12 = 0 is a root of this polynomial.
p (2) = (2)4 - 9 (2)2 - 4 (2) + 12 = 16 - 36 - 8 + 12 = -16 is not a root of this polynomial.
p (-4) = (-4)4 - 9 (-4)2 - 4 (-4) + 12 = 256 - 144 + 16 + 12 = 140
p (4) = (4)4 - 9 (4)2 - 4 (4) + 12 = 256 - 144 - 16 + 12 = 108
p (-9) = (-9)4 - 9 (-9)2 - 4 (-9) + 12 = 6561 - 729 + 36 + 12 = 5880
p (9) = (9)4 - 9 (4)2 - 4 (9) + 12 = 6561 - 729 - 36 + 12 = 5808
p (-1/2) = (-1/2)4 - 9 (-1/2)2 - 4 (-1/2) + 12 = 0.0625 - 2.25 + 2 + 12 = 11.8125
p (1/2) = (1/2)4 - 9 (1/2)2 - 4 (1/2) + 12 = 0.0625 - 2.25 - 2 + 12 = 7.8125
p (-3) = (-3)4 - 9 (-3)2 - 4 (-3) + 12 = 81 - 81 + 12 + 12 = 24
p (3) = (3)4 - 9 (3)2 - 4 (3) + 12 = 81 - 81 - 12 + 12 = 0
p (-6) = (-6)4 - 9 (-6)2 - 4 (-6) + 12 = 1296 - 324 + 24 + 12 = 1008
p (6) = (6)4 - 9 (6)2 - 4 (6) + 12 = 1296 - 324 - 24 + 12 = 960
p (-12) = (-12)4 - 9 (-12)2 - 4 (-12) + 12 = 20736 - 1296 + 48 + 12 = 19500
p (12) = (12)4 - 9 (12)2 - 4 (12) + 12 = 20736 - 1296 - 48 + 12 = 19404
Therefore, the potential roots of p(x) = x4 - 9x2 - 4x + 12 are - 2 and 3.
Select all of the following that are potential roots of p(x) = x4 - 9x2 - 4x + 12?
Summary:
The potential roots of p(x) = x4 - 9x2 - 4x + 12 is -2.
visual curriculum