Prove that tan(45°+ A) - tan(45°- A)/ tan(45°+ A) + tan(45°- A) = 1/sin2A
To prove the above equation, we will use trigonometric identities and value of tan45°.
Answer: Hence Proved that tan(45°+A) - tan(45°- A) / tan(45°+A) + tan(45°-A) = 1/sin2A
Let us see the solution.
Explanation:
As we know that tan (A + B) = tan A + tan B/ 1 - tan A tan B and tan (A - B) = tan A - tan B = 1 + tan A tan B
Using this identity, we will solve LHS.
Substitute A = 45° and B = A in this formula.
LHS = tan (45°+ A) - tan(45°- A) / tan(45°- A) + tan(45° + A)
tan (45°+ A) - tan(45°- A) = (1+ tanA)2 / (1 – tanA)2 + (1 - tanA)2 / ( 1 – tanA)2
= ((1+ tanA)2 + (1 - tanA)2) / (1 – tanA)2
= 2 (1+ tanA)2 / (1 – tanA)2
= 2 sec 2a
Similarly, tan (45°- A) + tan (45° + A) = 2 tan 2a
So, tan (45°+ A) - tan (45°- A) / tan (45°- A) + tan (45° + A) = 2 sec 2a / 2 tan 2a = 1/sin 2a
Thus, tan (45°+A) - tan(45°- A) / tan (45°+A) + tan (45°- A) = 1/sin 2a
visual curriculum