Prove that d/dx (csc x) = -csc x cot x.
Solution:
Let y = cosec x
⇒ y = 1/sinx
We have d/dx (u/v) = {v(du/dx) - u(dv/dx)} / v2
Here, u = 1 and v = sinx
d/dx(1 / sinx) = {[(sin x ). d/dx(1)] - [(1). d/dx(sin x)]} / (sin x)2
= {[sin x . (0)] - [(1) . (cos x)]} / sin2 x
= (-cosx) / sin2 x
= - (1 / sin x) . (cos x / sin x)
= - cosec x . cot x
Prove that d/dx (csc x) = -csc x cot x.
Summary:
d/dx (csc x) = -csc x cot x holds true.
Math worksheets and
visual curriculum
visual curriculum