Prove that d /dx (csc x) = -csc x cot x.
Solution:
Given function cosec x
d(cscx)dx = d(1/sinx)dx
= limh→0 1/sin(x+h)-1/sinx / (x+h)-x
= limh→0 sinx - sin(x + h)/sinxsin(x + h) /h
= limh→0 sinx - sin(x + h) / h sinx sin(x + h)
= limh→0 -(sin(x + h) - sinx)/h sinx sin(x + h)
= limh→0 - (sin(x + h) - sinx)h × 1/limh→0 sinx sin(x + h)
= -cosx × 1/sin2x
= -cosx/sinx × 1/sinx
= -cotx cscx
Therefore, we have proved the derivative of cosec x to be -cot x cosec x using the first principle of differentiation.
Prove that d /dx (csc x) = -csc x cot x.
Summary:
Hence, it is proved that d /dx (csc x) = -csc x cot x.
Math worksheets and
visual curriculum
visual curriculum