Prove cos (3x) = 4cos3 (x) -3cos (x)
Trigonometry helps in finding the measure of unknown dimensions of a right-angled triangle using formulas and identities based on this relationship.
Answer: Hence proved that cos (3x) = 4cos3x−3cosx
We have to prove cos (3x) = 4cos3x−3cosx
Expanantion :
We know that,
cos(A+B) = cos(A)cos(B) - sin(A)sin(B)
We can write cos(3x) = cos(2x + x)
Using the formula let's solve LHS = cos(3x)
cos(2x + x) = cos2x cosx − sin2x sinx
= (−1+2cos2x) cosx − (2cosx sinx) sinx (Since, cos2x = -1 + 2cos2x and sin2x = 2cosx sinx)
= − cosx + 2 cos3x − 2sin2x cosx
= − cosx + 2cos3x − 2(1 − cos2x)cosx (Since, sin2x = 1 - cos2x)
= − cosx + 2 cos3x - 2cosx + 2 cos3x
= 4cos3x − 3cosx = RHS
Thus, verified cos (3x) = 4cos3x − 3cosx
Math worksheets and
visual curriculum
visual curriculum