Integrate [sec(x) tan(x)] / [3 sec(x) + 5] dx
Solution:
We will be using the concepts of differentiation and integration to solve this.
Let's solve this step by step.
Given that, ∫ [sec(x) tan(x)] / [3 sec(x) + 5] dx
Let z = [3 sec(x) + 5]
Differentiate z with respect to x:
dz/dx = 3sec(x) tan(x)
sec(x) tan(x) dx = dz / [3]
Substitute the value of dx in the integration:
I = ∫ [sec(x) tan(x)] / [3 sec(x) + 5] dx = 1/3 ∫ 1/z dz
I = ln(z) / 3
Substitue the value of z above:
I = ln(3 sec(x) + 5) / 3
Hence, ∫ [sec(x) tan(x)] / [3 sec(x) + 5] dx = ln(3 sec(x) + 5) / 3
Integrate [sec(x) tan(x)] / [3 sec(x) + 5] dx
Summary:
Integration of [sec(x) tan(x)] / [3 sec(x) + 5] dx is equal to ln(3 sec(x) + 5) / 3
Math worksheets and
visual curriculum
visual curriculum