Integrate 1 / (1 + cot x) using substitution method.
We will make use of simple substitution of the whole integral value.
Answer: The solution to the give expression is (x/2) – (1/2)· log | sin x + cos x | + C
We can employ the conversion of the given expression equal to I and then solve for I.
Explanation:
Let I = ∫ 1/(1 + cot x) dx
We will solve this for I.
I = ∫ [ 1 / (1 + (cos x / sin x)) ]dx
= ∫ [ (sin x / sin x + cos x) ]dx
= ∫ 1/2[ (2sin x / (sin x + cos x)) ]dx
= ∫ 1/2[ {(sin x + cos x) + (sin x - cos x)} / (sin x + cos x) ]dx
= ∫ 1/2[ (sin x - cos x) / ( sin x + cos x) ]dx + ∫ 1/2dx
= ∫ 1/2x + ∫1/2[ (sin x - cos x) / ( sin x + cos x) ]dx
Now, to solve further we will assume (sin x + cos x) = t
Or, (cos x - sin x)dx = dt
So, I = x/2 + 1/2 ∫ -(dt)/t
= x/2 - 1/2 log | t | + C
Now, substituting back the value of t, we get
= x/2 - 1/2 log | sin x + cos x | + C
Hence the integration of 1 / (1 + cot x) using substitution method gives the value x/2 - 1/2 log | sin x + cos x | + C.
Math worksheets and
visual curriculum
visual curriculum