Integrate 1/ (1 + sin x)?
Solution:
We use one of the trigonometric identities to solve this.
We will multiply the numerator and denominator by of 1/ (1 + sin x) by (1 – sin x). Then we get
∫1/(1 + sinx) dx
∫1/(1 + sin x) · (1 - sin x)/(1 - sin x) dx
= ∫(1 − sin x)/(1 − sin2x) dx
From trigonometric identities, we know that sin2x + cos2x = 1. From this,
cos2x = 1 – sin2x
Substituting this in the above integral,
= ∫(1 − sin x) / cos2x dx
= ∫ (1/cos2x) - (sin x)/(cos x) · (1/cosx) dx
= ∫ (sec2x – tan x sec x) dx
= tan x − sec x + C (∵ ∫ sec2x dx = tan x and ∫ tan x sec x dx = sec x)
Thus, ∫1 / (1 + sin x) dx = tan x − sec x + C, where C is the integration constant.
Integrate 1/ (1 + sin x)?
Summary:
The integral of 1/ (1 + sin x) is ∫1/(1 + sin x) dx = tan x − sec x + C
Math worksheets and
visual curriculum
visual curriculum