If xy + 2ey = 2e, find the value of y'' at the point where x = 0.
Solution:
Given:
Equation is xy + 2ey = 2e
Taking derivative on both sides, we get
⇒ d(xy + 2ey) / dx = d(2e)/dx
⇒ d(xy)/dx + d(2ey)/dx = d(2e)/dx
On solving,
⇒ (1 + xdy/dx) + 2e dy/dx = 0
On grouping,
⇒ dy(x + 2e)/dx = -1
⇒ dy/dx = -1/(x + 2e)
Now,
y’’ = d2y/dx2
Finding second order derivative.
⇒ d2y/dx2 = - d/dx (1/(x + 2e)
⇒ d2y/dx2 = 1/(x + 2e)2
y'' at x = 0 is found to be :
⇒ d2y/dx2 = 1/(2e)2
⇒ d2y/dx2 = 1/4e2
Therefore, the value of y” at x = 0 is 1/4e2.
If xy + 2ey = 2e, find the value of y'' at the point where x = 0.
Summary:
For xy + 2ey = 2e, the value of y'' at the point where x = 0 is 1/4e2.
Math worksheets and
visual curriculum
visual curriculum