If x2 + y2 = 225 and dy/dt = 4, find dx/dt when y = 9.
Solution:
Given, x2 + y2 = 225
dy/dt = 4
We have to find dx/dt.
When y = 9,
⇒ x2 + (9)2 = 225
⇒ x2 + 81 = 225
⇒ x2 = 225 - 81
⇒ x2 = 144
Taking square root,
⇒ x = ±12
Differentiating with respect to t,
\(2x(\frac{dx}{dt})+2y(\frac{dy}{dt})=0\)
\(x(\frac{dx}{dt})+y(\frac{dy}{dt})=0\)
Put dy/dt = 4 in the above expression,
\((\pm 12)(\frac{dx}{dt})+(9)(4)=0\)
\((\pm 12)(\frac{dx}{dt})+36=0\)
\((\pm 12)(\frac{dx}{dt})= -36\)
\(\frac{dx}{dt}=(\frac{-36}{\pm 12})\)
\(\frac{dx}{dt}=\pm 3\)
Therefore, dx/dt = ±3
If x2 + y2 = 225 and dy/dt = 4, find dx/dt when y = 9.
Summary:
If x2 + y2 = 225 and dy/dt = 4, then dx/dt when y = 9 is ±3.
Math worksheets and
visual curriculum
visual curriculum