

If |u| = 6,|v| = 11 , and u · v = 1, find |u + v|?
Solution:
Using algebraic identities
|u + v|2 = |u|2 + 2uv + |v|2
Given:
|u| = 6, |v| = 11, and u · v = 1
Substituting the values in the above equation
|u + v|2 = 62 + 2(1) + 112
By further calculation
|u + v|2 = 36 + 2 + 121
So we get
|u + v|2 = 159
Taking the square root on the other side
|u + v| = √159
Therefore,
|u + v| = √159
Hence, the required value is √159.
If |u| = 6,|v| = 11 , and u · v = 1, find |u + v|?
Summary:
If |u| = 6,|v| = 11 , and u · v = 1, |u + v| = √159.
Math worksheets and
visual curriculum
visual curriculum