If r(t) = 4e3t, 2e-3t, 4te3t , find t(0), r''(0), and r'(t) · r''(t).
Solution:
Given, r(t) = 4e³t, 2e-3t, 4te3t -------------- (1)
We have to find t(0), r''(0), and r'(t) · r''(t).
To find r(0),
Put t = 0 in (1),
r(0) = 4e³(0), 2e-3(0), 4(0)e3(0)
r(0) = (4, 2, 0)
Therefore, at t(0) the value of r(0) is (4, 2, 0).
r’(t) = 3(4e3t), -3(2e-3t), 4e3t+3(4te3t)
r’(t) = 12e3t, - 6e-3t, 4e3t+12te3t
Put t = 0 in r’(t),
r’(0) = 12e3(0), - 6e-3(0), 4e3(0)+12(0)e3(0)
= 12, -6, 4
Therefore, r’(0) = (12, -6, 4)
r’’(t) = 3(12e3t), -3(-6e-3t), 3(4e3t) + 12e3t + 3(12te3t)
r’’(t) = 36e3t, 18e-3t, 12e3t+12e3t+36te3t
r’’(t) = 36e3t, 18e-3t, 24e3t+36te3t
Put t = 0 in r’’(t),
r’’(0) = 36e3(0), 18e-3(0), 24e3(0)+36(0)e3(0)
r’’(0) = (36, 18, 24)
Now, r’(0).r’’(t) = (12, -6, 4).(36, 18, 24)
= 12(36) - 6(18) + 4(24)
= 432 - 108 + 96
= 528 - 108
= 420
Therefore, r’(0).r’’(0) = 420
If r(t) = 4e3t, 2e-3t, 4te3t , find t(0), r''(0), and r'(t) · r''(t).
Summary:
If r(t) = 4e3t, 2e-3t, 4te3t , at t(0) the value of r(0) = (4, 2, 0), r''(0) = (36, 18, 24), and r'(t) · r''(t) = 420.
visual curriculum